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1.3 Preface

The study method of Science subjects are mainly depend on Mathematics.
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courses, Computer Science, Mathematics or other Science courses it is important
to learn a Basic mathematics before starting the main subjects. This book is
designed for them who are at beginner stage about learning mathematics. This is
the first part and first edition therefore, I would appreciate if you have any
suggestions, error corrections or advice to make this book better.

[ hope this book can help you to understand the basic math easily.
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2.1 Proportional Logic:

Propositional cdculus (also calledoropositional logic, sentential
calculus sentential logig or sometimegeroth-order logic) is the branch
of logic concerned with the study of propositions (whether they are true or false)
that are formed by other propositions with tlee oflogical connectives, and how
their value depends on the truth value of their components. Logical connectives
are found in natural languages. In English for example, some examples are "and"
(conjunction), “or " (di'S(hutonlgvihénausedtp " not O
denotematerial conditional).
The following is an example of a very simple inference within the scope of propositional
logic:
Premise 1: If it's raining then it's cloudy.
Premise 2: It's raining.
Conclusion: It's cloudy.
Both premses and the conclusion are propositions. The premises are taken for granted
and then with the application ofodus ponens (anference rule) the conclusion follows.
As propositional logic is not concerned with the structure of propositions beyond the
point where they can't be decomposed anymore by logical connectives, this inference can
be restated replacing thostomicstatements with statement letters, which are interpreted
as variables representing statements:
Premise 1P4 Q

Premse 2:P

ConclusionQ

The same can be stated succinctly in the following way:

PA Q Pk _ _

WhenPi s i nterpretedQas Mfiltt''ss alad wnd yndag 0t hmen da b o v e

expressions can be seen to exactly correspond with the origpraksion in natural
language. Not only that, but they will also correspond with any other inference of
thisform, which will be valid on the same basis that this inference is.

# More Details about Propositional Calculus or Propositional Logic:
Statemerd are sentences that claim certain things.

Can be either true or false, but not both.

Propositional logid deals with propositions

Propositional constants:

TT true

F - false

Propositional variables can have T or F value.

Atomic propositions:

propositinal constants

propositional variables

They cannot be further subdivided: "The sun is shining”




2.2COMPOUND PROPOSITION S:
Not atomic, contain at least ofagjical connective
"The sun is shiningnd the sky is blue"

Basiclogical connectives: AND, OR, NOT

Connective pronounced Symbol in Logic
Negation NOT =, =
Conjunction AND S

Disjunction OR \%

Conditional if then Y

Biconditional if and only if «

Exclusive or either éor b "+

Translating from English to symbols

English Logic Example
And, but AND s It is hot and sunny
A: Itis hot
B: It is sunny
A s B
Not NOT - Itis not hot: = A
Or (inclusive) OR YV It is hot or sunny
AV B

Or (exclusive) A or B but not both | Itis either hot or sunny
(A V RA s 3B)

Neitheré a A s a B ltisneitherhotnorsunny
a A s a B




2.3 TRUTH TABLES

Truth tables define formally the meaning of the logical connectives.
Evaluating compound statements: by building their truth tables

Negation (NOT, ~, =)

P ~P ~P is true if and only if P is false

Conjunction (AND, s )

P Q P s| Ps Qis trueiff both P and Q are true.
................... In all other cases @ Q is false

Disjunction (inclusive
or) (OR, V)
P Q PVQ P V Qs trudff P is true or Q is true or
------------------- both are true.

T T T P V Qs falséff both P and Q are false
T F T
F T T
F F F
Conditional, knownalso as i mpl i cation (YY)
P Q P Y The i mplicatiifofis P
------------------- true however Q is false.
T T T In all other cases the implication is true
T F F
F T T
FF T
Biconditional (0)
P Q P«Q P6Q is true iff P and Q have same

------------------- values- both are true or both are false.
T T T If P and Q have different values, the
T F F biconditional is false.
F T F
F F T




Exclusive or ("+"

P Q P“+'0Q P"+" Q is true iff P and Q have differen
___________________ values.
T T F If P and Q have same values, P"+" Q'i:
T F T false.
F T T
F F F

2.4 LOGICAL EQUIVALENCE

Definition: Two propositional expressions P and Q are logically equivalent,

i f they have same truth tables. We write P
Commutative laws P V. QI Q V P
P ¢ QT Q s P
Associative laws (P V Q) V R I P V
(Pe Qs R [s(®sR)
Distributive laws: PVQs(P V R) sIRR P V
(PsQV(PsR) ¢ (QNR)
Identity P VF I P, P s T
Negation P V ~P I T (exclu
Ps~P I F (contradi
Double negation ~(~P) [ P
Idempotent laws P V P I P
P s P [ P
De Morgan's Laws ~(P V @rQlI ~P
~PsQ) [ =~P V -Q
Universal bound laws (Domination) P VvV TT I
PsF [ F
Absorption Laws PV(PsQ) [ P
Ps( P V Q) [ P

Negation ofT andF ~T I F, ~F [ T




2.5 TAUTOLOGIES AND CONTRADICTIONS

Definition: A propositional expression istautology if and only if for all possible
assignments of truth values to its variables its truth vallie is

Example: PV - P

I f two expressions P and «Qisatadologyggui val ent , i
Definition: A propositional expression iscantradiction if and only if for all possible
assignments of truth values to its variables its truth valke is

Example: Ps - P

Implication PY Q

False onlywhenP=Tand Q=F

True for all other values of P and Q

Representing the implication by means of disjunction

P Y QI a P VvV Q

Example: "This textbook can be found in the library or in the bookstore.

P =The book can be found in the library

Q =The book can be found in the bookstore

Rewrite P V Qas implication. ~P Y Q

If the book is not in the library then itiis the bookstore.

Negation of conditional statements

~(P Y Q) = ~(Q- P V Q) =P

Example: This textbook can be found in the library or in the bookstore.
Negationt The book is not in the library and it is not in the bookstore.

Comments:

P Y Q mPistue theniQfis also true.

The negation is: P is true, however Q is false.

The negation of a conditional statement ia conjunction, not another ifthen
statement

Which expressions when negated will result in conditional statements?
Answer: a conjundbn.

Why? - the negation of a conjunction is a disjunction (De Morgan's laws)

Any disjunction is equivalent to if-then statement.
Example:

The weather is stormy but schools are opes.@
P: The weather is stormy

Q: Schools are open.

Negation:~(Ps Q= ~P V ~Q = P Y -~Q
If the weather is stormy the schools are closed (not open).
Converse, inverse, and contrapositive of P Y

Converse:QY P (Change position)
Inverse: ~PY ~Q (Change sign)
Contrapositive: ~Q Y ~P ( Change both position and sig




The impliation is equivalent to its contrapositive.
The inverse is equivalent to the converse.

Only if and unless(will not be on the final)

The expressions equivalent to P Y Q are:
Ponly if Q

~Q only if ~P

~P unless Q

Syllogisms(Patterns of arguments , inferenceules)
Modus Ponens and Modus Tollens

Modus ponens (method of affirming)

(D) If P then Q

2P

(3) Therefore Q

Example:

If it is Sunday we go fishing.

It is Sunday

Therefore we go fishing

Modus Tollens (method of denying)

(D) If P then Q

(2 Q

(3) Therebre ~P

Example:

If it is Sunday we go fishing

We do not go fishing

Therefore it is not Sunday

Modus ponens uses implication, modus tollens uses the contrapositive of the implication.
Examples of invalid arguments

Inverse error

If it is Sunday we go fiship

It is not Sunday

Therefore we do not go fishing

Converse error

If it is Sunday we go fishing
We go fishing

Therefore it is Sunday
Disjunctive syllogism
1HPVQ

(2 ~P

(3) Therefore ~Q

Example:




During the weekend we either go fishing or we play cards
This weekend we did not go fishing

Therefore, this weekend we were playing cards
Hypothetical syllogism

(1) P Y Q

(2) Q Y R

(3) Therefore P Y R

Example:

If we win the game we will get much money.

If we have money we will go on a trip to China.
Therefore, if we win the game we will go on a trip to China

2.6 METHOD OF PROOF

In mathematics, aroof is a deluctive argument for mathematical statement. In

the argument, other previously established statements, suble@ems, can be used. In
principle, a proof can be traced back to-ssident or assumed statements, known

asaxioms, along with accepted asl of inference. Axioms may be treated as conditions
that must be met before the statement applies.

Methods of proof:

In Mathematics, @roof is a demonstration that, given certaxioms some statement of
interest is necessarily true.

Proofs employogic but usually include some amountradtural languagehich of

course admits some ambiguity. In the contexirobf theory where purely formal proofs
are considered, such not entirely formal demonstrations are called "social proofs". The
distinction haded to much examination of current and historioalthematical

practice quasiempiricism in mathematicend secalledfolk mathematicgin both
senses of that term). Tipéilosophy of mathematias concerned with the role of
language and logic in progfandmathematics as a language

Regardless of one's attitude to formalism, the result that is proved to be ttheasem)

in a completely formal proof it would be the final line, and the complete proof shows
how it follows from the axioms alone. Onagheorem is proved, it can be used as the
basis to prove further statements. Theatledfoundations of mathematiese those
statements one cannot, or need not, prove. These were once the primary study of
philosophers of mathematics. Today focus isemmmpractice i.e. acceptable techniques.
Some common proof techniques are:

Direct proof. where the conclusion is established by logically combining the axioms,
definitions and earlier theorems

Proof by inductionwhere éase casés proved, and amdudion rule used to prove an
(ofteninfinite) series of other cases

Proof by contradictionwhere it is shown that if some property were true, a logical
contradiction occurs, hence the property must be false.




Proof by constructionconstructing a concrete @xple with a property to show that
something having that property exists.

Proof by exhaustiarwhere the conclusion is established by dividing it into a finite
number of cases and proving each one separately

We also use the following proof techniques a#i:we

A probabilistic proofshould mean a proof in which an example is shown to exist by
methods oprobability theory not an argument that a theorem is ‘probably’ true. The
latter type of reasoning can be called a ‘plausibility argument’; in the ctseQaufllatz
conjecturat is clear how far that is from a genuine proof. Probabilistic proof is one of
many ways to show existence theoreatber thanproof by construction.

If we are trying to prove, for example, "Some X satisfies f(X)",

anexistenceor nonconstructiveproof will prove that there is a X that satisfies f(X), but
doesnot tell you how such an X will be obtained.cAnstructiveproof, conversely, will
do so.

A statement which is thought to be true but hasn't been proven yet is known as
aconjecture

Sometimes it is possible to prove that a certain statement cannot possibly be proven from
a given set of axioms; For Example t@ntinuum hypothesidn most axiom systems,
there are statements which can neither be proven nor disproven; SafisG
incompleteness theorem.

Description of the all proof methods are following with Examples:

Direct proof

In direct proof, the conclusion is established by logically combining the axioms,
definitions, and earlier theorentsr example, direct proafan be used to establish that
the sum of twaevenintegerds always even:

Consider two even integexsaandy. Since they are even, they can be written

asx = 2a andy = 2b, respectively, for integesandb. Then the sum+y=2a+ 2b =
2(a+b). Thereforext+y has 2 as a factor and, by definition, is even. Hence the sum of any
two even integers is even.

This proof uses the definition of even integers, the intpgmserties otlosureunder
addition and multiplication, andistributivity.

Proof by mathematical induction

Despite its name, mathematical induction is a methatkdéiction, not a form

of inductive reasoning. In proof by mathematical induction, a sifiiglee case" is

proved, and an "induction rule" is proved that establishes that any arbitrary
caseimpliesthe next case. Since in principle the induction rule can be applied repeatedly
starting from the proved base case, we see that all (usofadiyely many) cases are
provable.This avoids having to prove each case individually. A variant of mathematical
induction isproof by infinite descent, which can be used, for example, to prove
theirrationality of the square root of two.

A common application ofnpof by mathematical induction is to prove that a property
known to hold for one number holds for all natural numBerget N = {1,2,3,4,...} be



https://en.wikipedia.org/wiki/Even_and_odd_numbers
https://en.wikipedia.org/wiki/Mathematical_proof#cite_note-15

the set of natural numlserandP(n) be a mathematical statement involving the natural
numbem belonging taN such that

(i) P()is true, i.e.P(n) is true forn = 1.

(i) P(n+1) is true wheneveP(n) is true, i.e.P(n) is true implies thaP(n+1) is true.
Then P(n) is true for all natural numbers n.

For example, we can prove by induction that all positive integers of theorni are
odd. LetP(n) represent"@1 1is odd":

() Forn=1,2nT 1=2(1)1 1=1, andlis odd, since it leaves a remainderlathen
divided by2. Thu$ (1) is true.

(i) For anyn, if 2nT 1is odd P(n)), then(2n1 1) + 2must also be odd, because
adding2 to an odd number results in an odd number.

But(2n1 1)+2=2n+1=2(n+1)1 1, so2(n+1)1 1lis odd P(n+1)).
SoP(n)impliesP(n+1).

Thus 2nT 1is odd, for all positive integers

The shorter phrase "proof by induction" is often used idsté&dproof by mathematical
induction”[16]

Proof by contraposition

Proof by contrapositionnfersthe conclusion "ip theng" from the premise "ihot

g thennot p'. The statement "ifot qthennot pg' is called thecontrapositiveof the
statement "ipp thenq". For example, contraposition can be used to establish that, given
an integex, if X2 is even, them is even:

Suppose is not even. Ther is odd. The prduct of two odd numbers is odd, hexée
=Xx-Xis odd. Thus is not even. Thus, ¥ is even, the supposition must be false,
sox has to be even.

Proof by contradiction:

In proof by contradiction (also known esduckintio ad absurduptatin for "by

reduction to the absurd"), it is shown that if some statement were true, a logical
contradiction occurs, hence the statement must be false. A famous exampld biproo

contradiction shows that is anirrational number

Suppose that  were a rational number, so by definition wherea andb are non
zero integers witho common factor(If there is a common factor, divide both numerator
and denominator by that factor to rematyend repeat until no common factor remains.

By the method of infinite descent, this process must terminate.) Thus,Squaring

both sides yieldsi = a2. Since 2 divides the left hand side, 2 must also divide the right
hand side (otherwise an even number would equal an odd numbe#) isSeven, which
implies thata must also be even. So we can wate 2c, wherec is also an integer.
Substitution into the original equation yields’ 2 (2c)2 = 4c2. Dividing both sides {2
yieldsb? = 2c2. But then, by the same argument as before, 2 dibjeob must be

even. However, i andb are both even, they have a common factor, namely 2. This



https://en.wikipedia.org/wiki/Mathematical_proof#cite_note-16
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https://en.wikipedia.org/wiki/Contrapositive
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https://en.wikipedia.org/wiki/Irrational_number
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contradicts our initial supposition, so we are forced to conclude thatis an irrational
number.

Proof by construction

Proof by construction, or proof by example, is the construction of a concrete example
with a property to show that something having that property edis¢®ph Liouville, for
instance, provethe existence dfanscendental numbédpy constructing aexplicit

example. It can also be used to construmunterexampléo disprove a proposition that

all elements have a certain property.

Proof by exhaustion

In proof by exhaustion, the conclusi@established by dividing it into a finite number of
cases and proving each one separately. The number of cases sometimes can become very
large. For example, the first proof of tfoeir color theoremwvas a proof by exhaustion

with 1,936 cases. This proafas controversial because the majority of the cases were
checked by a computer program, not by hand. The shortest known proof of the four color
theorem as of 2014till has over 600 cases.

Probabilistic proof

A probabilistic proof is one in which an exarap$ shown to exist, with certainty, by

using methods gbrobability theory. Probabilistic proof, like proof by construction, is

one of many ways to sho&xistence theorems.

This is not to be confused with an argument that a theorem is 'probably’ true, a
‘plausibility argument’. The work on ti@ollatz conjecturesshows how far plausibility is

from genuine proof.

Combinatorial proof

A combinatorial proof establishes the equivalence of different expressions by showing
that they count the same object in diffiet ways. Often hijectionbetween two sets is

used to show that the expressions for their two sizes are equal. Alternativelipla
counting argumeryrovides two different expressions for the size of a single set, again
showing that the two expressis are equal.

Nonconstructive proof

A nonconstructive proof establishes thatathematical objeatith a certain property

exists without explaining how such an object can be found. Often, this takes the form of a
proof by contradiction in which the nonistence of the object is proved to be impossible.
In contrast, a constructive proof establishes that a particular object exists by providing a
method of finding it.

Some examples of nonconstructive proofs:

An example is the following proof of the theoréhere existirrational numbersand

such that is rational."”

Recall that is irrational, and 2 is rational. Consider the number. Either it is rational or it is
irrational.

If it is rational, then the theorem is true, with and both being.

If it is irrational, then the theorem is true, with being and being, since A constructive
proof of this theorem would leave us knowing values for and Since we don't know this
(because we don't know wheter is irrational), this proof is nonconstructive.




(The statement "Eithes rational or it is irrational”, from the above proof, is an instance
of thelaw of excluded middle, which is not valid within a constructive proof.)

Another example of a nonconstructive theorerolsn Nash's proof that the game

of Hex s a firstplayerwin.

Statistical proofs in pure mathematics

The expression "statistical proof" may be used technically or colloquially in arpaseof
mathematics, such as involvimgyptographychaotic series, and probabilistic or
analyticnumber theorylt is less conmonly used to refer to a mathematical proof in the
branch of mathematics known ethematical statistics.

Computer-assisted proofs

Until the twentieth century it was assumed that any proof could, in principle, be checked
by a competent mathematiciancnfirm its validity. However, computers are now used
both to prove theorems and to carry out calculations that are too long for any human or
team of humans to check; the first proof of ther color theorems an example of a
computerassisted proof. Soermathematicians are concerned that the possibility of an
error in a computer program or a ftime error in its calculations calls the validity of

such computeassisted proofs into question. In practice, the chances of an error
invalidating a computeassisted proof can be reduced by incorporating redundancy and
self-checks into calculations, and by developing multiple independent approaches and
programs. Errors can never be completely ruled out in case of verification of a proof by
humans either, espetiaif the proof contains natural language and requires deep
mathematical insight.

There are also more proof techniques:

Undecidable statements: A statement that is neither provable nor disprovable from a set
of axioms is called undecidable (from thos@ms). One example is thparallel

postulate, which is neither provable nor refutable from the remaining axioms

of Euclidean geometry.

Heuristic mathematics and experimental mathematics: While early mathematicians such
asEudoxus of Cniduslid not use praks, from Euclid to thefoundational
mathematicslevelopments of the late 19th and 20th centuries, proofs were an essential
part of mathematics.With the increase in computing power in the 1960s, significant work
began to be done investigatingathematical bjectsoutside of the proetheorem
framework,in experimental mathematics. Early pioneers of these methods intended the
work ultimately to be embedded in a classical prib@rem framework, e.g. the early
development of fractal geometnyhich was ultiméely so embedded.

Visual proof: It uses graphs or any other visual demonstrations without any words also
called AProof without Wordso

Elementary proofAn elementary proof is a proof which only uses basic techniques.
More specifically, the term is used mumber theoryo refer to proofs that make no use

of complex analysis. For some time it was thought that certain theorems, ljentiee
number theorem, could only be proved using "higher" mathematics. However, over time,
many of these results have beepmoved using only elementary techniques.




3.1 Properties of Integers, Elementary Number Theory

Properties of Integers

The following are some of the properties of integers. Scroll down the page for more
examples and explanations of the different properif integers.

Property Description Example
Commutative Property of Changing the order of addends does | 2+5=5+2
Addition not change the sum
Commutative Property of Changing the order of the factors (-3)x8=8x(-3)
Multiplication does not change the product.
Associative Property of Changing the grouping of the addends | (-3+5)+2=-3+(5+2)
Addition does not change the sum.
Associative Property of Changing the grouping of the factors | (2x4)x6=2x(4x6)
Multiplication does not change the product.
Distributive Property Multiplying a sum by a numberisthe | -3(-4+5)=12-15

same as multiplying each addend by
that number and then adding the two
products.

Identity Property for Addition | Adding 0 and any number does not 7+0=-7
change the value of the number.

Identity Property for Multiplying 1 and any number does | -8x1=-8

Multiplication not change the value of the number.

Inverse Property of Addition | The sum of any integer and its 6+(-6)=0
additive inverse is 0.

Zero Property of The product of 0 and any numberis 0. | -5x0=0

Multiplication

Elementary Number Theory

Elementary number theory is the branch of number theory in which elementary methods
(i.e., arithmetic, geometry, and algebra) are used to solve equations with integer or
rational solutions. Below is the list ofe@ Elementary Number Theory:

I Composite number

i Divisibility rule

il. Divisor

\Y2 Euler's foursquare identity
V. Half-integer

Vi. Integer

Vil. Table of prime factors

vii.  Reduced residue system




I. Composite number:

A composite number is a positive integer that can be formed hiypiging together two

smaller positive integers. Equivalently, it is a positive integer that has at least one divisor
other than 1 and itself.[1][2] Every positive integer is composite, prime, or the unit 1, so
the composite numbers are exactly the numthextsare not prime and not a unit.[3][4]

For example, the integer 14 is a composite number because it is the product of the two
smaller integers 2 x 7. Likewise, the integers 2 and 3 are not composite numbers because
each of them can only be divided byecand itself.

i. Divisibility rule:

A divisibility rule is a shorthand way of determining whether a given number is
divisible by a fixed divisor without performing the division, usually by examining its
digits. Although there are divisibility tests for nuarb in any radix, or base, and they
are all different, this article presents rules and examples only for decimal, or base 10,
numbers.

Exampl e: Divisibility by 0626

376 (The original number)

376 (Take the last digit)

6 + 2 = 3 (Check to see if the lastitlig divisible by 2)

376 + 2 =188 (If the last digit is divisible by 2, then the whole number is divisible by 2)

PN E

iii. Divisor:

In mathematics a divisor of an integeralso called a factor of, is an integer that can be
multiplied by some other integey producen. An integem is divisible by another
integerm, if mis a factor ofn, so that dividingh by m leaves no remainder.
1 Example: Thesetof all positive divisors of 60,
A={1,2,3,4,5,6,10,12,15,20,30} partially ordered by divisibility, hasHlasse
diagram:




V. Euler's four-square identity

In mathematicsEuler's four-square identity says that the product of two numbers, each of
which is a sum of fousquaresis itself a sum of four squares.

Example:The amazing polynomial identitf-or any pa of quadruples from aommutative ringthe
following expressions are equal:

(ai + a3 +ai +a3)(bi + b3 + b3 + b7
=(a1 by —aaby—ais by —ay bs) +(ay by +az by + a3 by —ay ba) +
(ai by —az by + a3 by +as b2 + (@) by +ay by —az by +as b ¥,

Leonhard Euler wrote about this identity in a letter dated May 4, 174€hristian
Goldbach (but he used a different sign convention from the above). It can be proven
with elementary algebra

V. Half-integer

In mathematics, a halhteger is a number of the form

n+1/2
wheren is an integer. For example,
41, 7/ 2, 113/ 2, 8.5

are all halfintegers.

Half-integers occur frequently enough in mathematical contexts that a specidbt

them is convenient. Note that a half of an integer is not always-akedfer: half of an
even integer is an integer but not a kiateger. The halintegers are precisely those
numbers that are half of an odd integer, and for this reasonsareadled the halbdd
integers. HaHintegers are a special case of the dyadic rationals, numbers that can be
formed by dividing an integer by a power of two

Vi. Integer
An integer is a number that can be written without a fractional component. For example
21, 4, 0, and 12048 are integers, whil e 9. 75
|l etter 06Z6: 0Zahl end in Ger man means count o
Vil. Table of prime factors:
The tables contain the prime factorization of the natural numbersifitoni000.

When n is a prime number, the prime factorization is just n itself, written in bold below.
The number 1 is called a unit. It has no prime factors and is neither prime nor composite.




vii.  Reduced residue system

Any subseR of the integers is clld areduced residue systenmodulon if:

1. gcd(, n) =1 for each contained irR;

2. Rcontaindi(n) elements;

3. no two elements dR are congruent modulo
For example, a complete residue system modulo 12is {0, 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11}.
1, 5, 7 and 11 are the only integers in this set which are relatively prime to 12, and so the
correspondig reduced residue system modulo 12 is {1,5,7,11}. cArdinalityof this set
can be calculated with the totient functiai(12)=4.

3.2 Basic set theory, Relations, Functions:

Basic Set Theory

Sets are weltletermined coéictions that are completely characterized by their elements. Thus,
two sets are equal if and only if they have exactly the same elements. The basic relation in set
theory is that of elementhood, or membership. We waritkaN A to indicate that the objeekis
anelementor amembey of the seAA. We also say thatabelongs tcAA. Thus, a seAA is
equal to a seéBB if and only if for everyag a¥ Aa¥ A if and only ifar BaN B. In particular, there
is only one set with no elements at all. This set is cafietirally, theempty setand is
represented by the symboln, _ _
We say thaAA is asubsebf BB, writtenAFf BAPB, if every element oAA is_ an element
of BB. Thus,A=BA=B if and only if APBAPB andBPABPA. Notice that" FAn FA, for every
setAA.
Given setsAA andBB, one can perform some basic operations with them yielding the following
sets:
1 The setA’ BA" B, called theunionof AA andBB, whose elements are the elements
of AA and the elements &B.
1 The setA Z B A Z dalled thantersectionof AA andBB, whose e¢ments are the
elements common tAA andBB.
1 ThesetA1 B A Jcalled thedifferenceof AA andBB, whose elements are those

elements oAAthat are not members BB.
It is routine to check that those operations satisfy the following properties:

1 Associativiy:

o A (B C)=(A" BY CA (B C)=(A" B C

o Az(BzC)=(AzB)zCAz(BzC)=(AzB)zC
1 Commutativity:

o A B=B AA" B=B A

o AZB=BZAAZB=BZzA




1 Distributivity:
o A(BZC)BJA (A (BzC)Bj Aa(C
o Az(B)=(AtBEC)AC)YB(AELB}YC)
71 Ildempotency:

A A=AA" A=A
AzA=AAZA=A

A" P=AAT N=A
AZn=nA zn=n
o AT A'AT A=
1 If APBAPB, then
o AB=A"( BT A)BBWM( BT A) =B
o AZB=AAZB=A
o
Given an objecaawe can form the set that haaas its only element. This set is denoted
by {a}{a} . More generally, givea , b , ¢ , é wae chnfarm tlde sethavieg, b, ¢, éaa, b, c, é
its elements, which we denote pya , b, ¢ , é }. @faourbe, we,canjactually write down all

the elements of the set when there are not too many of them. In the case of infinite sets this is
clearly not possible.

)
)
f
0
)

If a=ba=h then{a,b}={a}{a,b}={a} . Also, for anyaaandbb, the paif{a,b}{a,b} is the same as

the pair{b,a}{b,a}. So, if we wish to take into account the order in which the two elements of a
pair are given, we need to find another way of representing the pair. Thus, we defirdetieel

pair (a,b)(a,b)as the sef{a},{a,b}{{a}{a,b}} . One can easily check that two ordered
pairs(a,b)(a,b)and(c,d)(c,d)are equal if and only ti=ca=candb=db=d The order is now
important, forifa | b atheb( a, b) I (b,.a) (a, b) Il (b, a)

The Cartesian producAxBAxB of two setsAA andBB, is defined as the set of all ordered
pairs(a,b)(a,byuch thae Aay A andb~y Bb~ B.

Having defined ordered pairs, one can now dedirtered
triples (a,b,c)(a,b,cps(a,(b,c))(a,(b,c))or in generabrderednn
tuples( a l,,aén) (ads(a@lag@a2,¢é,an))(al, (a2, ¢é,an))

The Cartesianproduét 1 T é T An A1l 1, afthedsatA 1, é , An A is thé setohalhn
tuples( a 1, €, a n puchatHatidAjaiaAi,for everyl Oi O n.lin(part@uar, fom 02 n O 2
the nrrtimes Cartesian pouct of a sefA, denoted byAnAn, is the set of alhn-tuples of

elements oRAA.

3.3 Relations

A binary relationon a seAA is a set of ordered pairs of element\df, that is, a subset
of AXAAxA . In general, ann-ary relationon AA is a subset oAnAn.




A binary relatiorRR on a seAA is calledreflexiveif (a,a) R(a,a) R for everya¥ AaN A. It is
calledsymmetridf (b,a) R(b,a) R whenevei(a,b) R(a,b} R. And it is

calledtransitiveif (a,c) R(a,c)} R whenever(a,b) R(a,b} R and(b,c) R(b,c) R. A relation that
is reflexive, symmetric, and transitive is calle@amivalence relationThe identity relation on
any setAA is the paradigmatic example of an equivalence relation. Another example is the
relation on the set of all finite sets of natural numbers consisting of all the(@aii&,b)such
thataaandbb have tle same number of elements.

If RRis an equivalence relation on a #8ét, and(a,b) R(a,b) R, then we say that
thataaandbb areRR-equivalent For everya¥ AaN A, theequivalence classf ag usually
denoted bya]R[a]R, is the set of all elements AR that areRR-equivalent tcaa The set of

all RR-equivalence classes is called thettient setand is denoted b&/RA/R. One can easily
check thatA/RA/R is apartition of AA, that is, no element AIRA/R is empty, any two elements
of A/RA/R are disjoint, and everg® Aa¥ A belongs to (exactly) one elementARA/R, namely
the clasga]R[a]R.

If RRis a binary relation, then one usually wrisRbaRbinstead of(a,b) R(a,b) R.

A binary relationrRRon a sefAA is

calledantisymmetriéf a=ba=bwheneveaRbaRbandbRabRa A relationRR on a seAA that is
reflexive, antisymmetric, and trarisi, is called a (reflexivepartial order. If we remove

from RRall pairs(a,a)(a,a)for everyay Aa~y A, then we get atrict partial order. Thé® Prelation
on any set of sets is an example of a partial order. A partial order on a giveh setisually
represented by the symb®l Qand the corresponding strict partial orderingsy A partial
orderO On a seAA with the additional property that eitherO b a0 a bfd all
elementsaaandbb of AA, is called aotal order, or alinear order. The usuborderings of the
setNN of natural numbers, the séFof the integers, the s&Q of the rational numbers, or the
setRR of real numbers, are linear orders.

Notice that ifO Us a linear order on a s&\, andBPABPA, thenO 2 B 2 O isRlgo a linear

orde onBB. IfO s a linear order on a s&f\, then we say that AaN A is theO Geast element

of AA if there is nob¥ AbN A distinct fromaasuch thab O a bT@enumbebOis the least

element oNN, butZZ has no least element.

A linear orderO @n a seAA is awell-order if every norempty subset oAA has a0 @east

element. Equivalently, if there is no infinite strictly descending sequence
€<a2<al<alé<a?2<al<ab0

of elements oAA. Thus, the usual ordering biN is a weltorder. But the usual order

on ZZ is not, because it has no least element.

3.4 Functions

A (1l-ary)functionon a seAA is a binary relatiofrF on AA such that for evergh Aav A there
is exactly one paifa,b) F(a,b¥ F. The elemenbbis called thevalueof FF onaa and is denoted
by F(a)F@). And the seA is called thedomainof FF. The notatiorF : A Y B F : iAdi¢dBes
thatFF is a function with domaidA and values in the s&B. Forn O 2 nabmary
functiononAA is a functionF : An Y BF :, foms¥nizBB.

A functionF : A Y B F : idonhdo-oneif for all elementsaaandbbof AA,ifal bai b
thenF ( a) | F ( b )ARd isoitdif Fof dverybr BbN B there is somat AaN A such
thatF(a)=bF(a)=b Finally, FF is bijectiveif it is oneto-one and onto. Thus, a

bijectionF : A Y B F : estiHlishes a ore-one correspondence between the elements




of AA and those oBB, andAA is bijectablewith BB if there is such a bijection. Theentity
functionon a sefAA, denoted by d : AY Al dandwhigh consists of all the pa{ga)(a,a)
with av AaN A, is trivially a bijection.

Given functionss : AYBF : ahd@ B Y C G: ,Bhga@mposition oFF andGG,

written GAFG&F, is the functiorGaF : A Y TFG A YWBose elements are all
pairs(a,G(F(a)))(a,G(F(a))wherea¥ AaN A. If FFandGG are bijections, then so (SAFGAF.

4.1 Calculus: Real Numbers, Sequences, Limits, Series, Real
Functions

4.2 Field

You are probably already familiar with many different sets of numbers from your past
experienceSome of the commonly used sets of numbers are
1 Natural numbers, usually denoted wathiN, are the numbers 0,1,2,3,...
1 Integers, usually denoted withZa are the positive and negative natural numbers:
.=372-1,0,1,2,3...
1 Rational numbers, denoted witlQa are fractions of integers (excluding division
by zero):-1/3, 5/1, 0O, 2/7. etc.
1 Real numbers, denoted witiRa are constructed and discussed below.
Note that different sets of numbers have different properties. In the set integers for
example, any number always hasaaldlitive inversefor any integek, there is

another integersuch that This should not be terribly surprising: from basic

arithmetic we know that . Try to prove to yourself that not all natural numbers
have an additive inverse.

In mathematics, it is useful to note the imipoit properties of each of these sets of
numbers. The rational numbers, which will be of primary concern in constructing the
real numbers, have the following properties:

There exists a number 0 such that for any other numti#a=a+0=a

For any two numbera andb, a+b is another number

For any three numbeesb, andc, a+(b+c)=(a+b)+c

For any numbea there is another numbea such that+(-a)=0

For any two numbera andb, a+b=b+a

For any two numbera andb,a*b is another number

There is a number 1 sm¢hat for any numbea, a*1=1*a=a

For any two numbera andb, a*b=b*a

For any three numbeesb andc, a(bc)=(ab)c

For any three numbeesb andc, a(b+c)=ab+ac




For every numbea there is another numbar! such that ad=1

As presented above, these nsa@gm quite intimidating. However, these properties are
nothing more than basic facts from arithmetic. Any collection of numbers (and
operations + and * on those numbers) which satisfies the above properties is called
afield. The properties above are ulyaalledfield axiomsAs an exercise,

determine if the integers form a field, and if not, which field axiom(s) they violate.
Even though the list of field axioms is quite extensive, it does not fully explore the
properties of rational numbers. Rationaimbers also have amdering.'A total
orderingmust satisfy several properties: for any numbels andc

if a Ob andb Oathena = b (antisymmetry)

if a Ob andb Oc thena Oc (transitivity)

aOb or b Oa (totality)

To familiarize yourself with these properties, try to show that (a) natural numbers,
integers and rational numbers are all totally ordered aové generally (b) convince
yourself that any collection of rational numbers are totally ordered (note that the
integers and natural numbers are both collections of rational numbers).

Finally, it is useful to recognize one more characterization of thenedtirmimbers:

every rational number has a decimal expansion which is either repeating or
terminating. The proof of this fact is omitted, however it follows from the definition
of each rational number as a fraction. When performing long division, the reenaind
at any stage can only take on positive integer values smaller than the denominator, of
which there are finitely many.

4.3 Constructing The Real Number

There are two additional tools which are needed for the construction of the real
numbers: the uppdound and the least upper boubBefinition A collection of

numbersE is bounded above if there exists a numbsuch that for alk in Ex O.m

Any numbemwhich satisfies this condition is called an upper bound of thE.set
Definition If a collection of numberE is bounded above wittm as an upper bound

of E, and all other upper boundsBfare bigger tham, we callm theleast upper

bound or supremunof E, denoted by suf.

Many collections of rational numbers do not have a least upper bound which is also
rational, although some do. Suppose the numbers 5 and 10/3 are, together, taken to
beE. The number 5 is not only an upper boundEoit is a least upper bound. In

general, there are many upper bounds (12, for instance, is an upper bound of the
collection above), but there can be at most one least upper bound.

Consider the collection of numbgi® 3.1, 3.14, 3.141, 3.1415..}: You may

recognize these decimals as the first few digits of pi. Since each decimal terminates,
each number in this collection is a rational number. This collection has infinitely




many upper bounds. The number 4,iftance, is an upper bound. There is no least
upper bound, at least not in the rational numbers. Try to convince yourself of this fact
by attempting to construct such a least upper bound: (a) why does pi not work as a
least upper bound (hint: pi does m@tve a repeating or terminating decimal
expansion), (b) what happens if the proposed supremum is equal to pi up to some
decimal place, and zeros after (c) if the proposed supremum is bigger than pi, can you
find a smaller upper bound which will work?
In fact, there are infinitely many collections of rational numbers which do not have a
rational least upper bound. We define a real number to be any number that is the least
upper bound of some collection of rational numbers.
Properties of Real Number

The reas are totally ordered.

For all realsa, b, ¢

Eitherb>a, b=a, orb<a.

If a<b andb<c thena<c

Also

b>a impliesb+c>a+c

b>a andc>0 impliesbc>ac

b>a implies-a>-b

Upper bound axiom

Every nonempty set of real numbers which is bounded above has a supremum.

The upper bound axiom is necessary for calculus. It is not true for rational numbers.

We can also define lower bounds in the same way.

Definition A setE is bounded below if there exists a real M such that for

allxv Ex O Winy M which satisfies this condition is called an lower bound of th& set

Definition If a set,E, is bounded belowy is an lower bound dE, and all other lower

bounds of are less thaM, we callM thegreatest lower boundrinifimumof E,

dended by infE

The supremum and infimum of finite sets are the same as their maximum and minimum.

Theorem

Every nonempty set of real numbers which is bounded below has an infimum.

Proof:

Let E be a norempty set of real numbers, bounded below

Let L be the st of all lower bounds of E

L is not empty, by definition of bounded below

Every element of E is an upper bound to the set L, by definition

Therefore, L is a non empty set which is bounded above

L has a supremum, by the upper bound axiom

1/ Everylowerbond of E is Osup L, by definition

Suppose there were anE such that e<sup L

Every el ement of L is Oe, by definition

Therefore e is an upper bound of L and e<sup L

This contradicts the definition of supremum, so there can be no such e.

fexEthen eOsup L, proved by contradiction

2/ Therefore, sup L is a lower bound of E

of



inf E exists, and is equal to sup Lon comparing definition of infinum to lines 1 & 2
Bounds and inequalities, theorems:

Theorem: (The triangle inequality)

Proof by considering cases

| f a Ob|®d+|cib|=écr)+(cb) = 2(cb)+(b-a)>b-a= |b-a|

Exercise:Prove the other five cases.

This theorem is a special case of the triangle inequality theorem from geometry: The sum
of two sides of a triangle is greater than or equal to the #ide. It is useful whenever

we need to manipulate inequalities and absolute values.

4.4 Series

A series is the sum of a sequence of terms. An infinite series is the sum of an infinite
number of terms (the actual sum of the series need not be infis e will see below).

An arithmetic series is the sum of a sequence of terms with a common difference (the
difference between consecutive terms). For example:

1+4+7+10+13+¢€.
is an arithmetic series with common difference 3, since
& =3, aa =3,&a=3, aa =3, and so forth.

A geometric series is the sum of terms with a common ratio. For example, an interesting
series which appears in many practical problems in science, engineering, and
mathematics is the geometric series,

r+r’+r3+*+ € . hevr e t he €. indi cates that the seri e
way to study a particular series (following Cauchy) is to define a sequence consisting of
the sum of the firsh terms. For example, to study the geometric series we can consider

the ®quence which adds together the first n terms:

Si()=B i

Generally by studying the sequence of partial sums we can understand the behavior of the
entire infinite series.

Two of the most important questions about a series are:

Does it convege?

If so, what does it converge to?

For example, it is fairly easy to see that for 1 the geometric serieS(r) will not

converge to a finite number (i.e., it will diverge to infinity). To see this, note that each

time we increase the number of tarm the seriessi(r) increases byn+1, sincern+1>1




for all r>1 (as we defined)$h(r) must increase by a number greater than one every term.
When increasing the sum by more than one for every term, it will diverge.

4.5 Sequences

A sequencas an ordered list of objects (or events). Like a set, it contains members (also
calledelement®r termg, and the number of terms (possibly infinite) is called

thelengthof the sequence. Unlike a set, order matters, and exactly the same elements can
appeamultiple times at different positions in the sequence.

For example, (C, R, Y) is a sequence of letters that differs from (Y, C, R), as the ordering
matters. Sequences canfbete, as in this example, anfinite, such as the sequence of

all even positiventegers (2, 4, 6,...).

Example of Notation

There are various and quite different notions of sequences in mathematics, some of which
(e.g., exact sequence) are not covered by the notations introduced below.

A sequence may be denoted, @, ...). For shaness, the notatioray) is also used.

A more formal definition of dinite sequencewith terms in a se$is a function from {1,

2, ...,n}to Sfor somen O 0 .infinAensequencein Sis a function from {1, 2, ...} (the

set of natural numbers without 0) 3o

Sequences may also start from 0, so the first term in the sequenceas then

A finite sequence is also called atuple. Finite sequences inclutteeempty sequende

) that has no elements.

A function from all integers into a set is sometimes callbdiafinite sequence since it

may be thought of as a sequence indexed by negative integers grafted onto a sequence
indexed by positive integers.

Types and Properties of Sequences

A subsequence of a given sequence is a sequence formed from the given sequence by
deleting some of the elements (which, as stated in the introduction, can also be called
"terms") without disturbing the relative positionstioé remaining elements.

If the terms of the sequence are a subset of an ordered setntio@ot@nically
increasingsequence is one for which each term is greater than or equal to the term before
it; if each term is strictly greater than the one preceijrige sequence is callatrictly
monotonically increasingA monotonically decreasing sequence is defined similarly.

Any sequence fulfilling the monotonicity property is called monotonimonotone This

is a special case of the more general notioa mfonotonic function. A sequence that

both increases and decreases (at different places in the sequence) is sa@to be
monotonicor non-monotone

The termsondecreasingandnonincreasingare often used in order to avoid any

possible confusion witktrictly increasing and strictly decreasing, respectively. If the




terms of a sequence are integers, then the sequence is an integer sequence. If the terms of
a sequence are polynomials, then the sequence is a polynomial sequence.

If Sis endowed with a tapogy (as is true of real numbers, for example), then it becomes
possible to consider ttewnvergencef an infinite sequence @ Such considerations

involve the concept of themit of a sequence

It can be shown that bounded monotonic sequences nmustrge.

Sequences in Analysis

In analysis, when talking about sequences, one will generally consider sequences of the
form

{x1, xoB{,x0x,é}lx1l, x2¢e}

which is to say, inhite sequences of elements indexed by natural numbers. (It may be
convenient to have the sequence start with an index different from 1 or 0. For example,

the sequence defined ly= 1/logn) would be defined onlyfaon® 2. When t al ki ng
about such infirte sequences, it is usually sufficient (and does not change much for most
considerations) to assume that the members of the sequence are defined at least for all
indices large enough, that is, greater than some ¢ien

The most elementary type of sequemare numerical ones, that is, sequences of real or
complex numbers.

4.6 Limits

A limit is the value that functionor sequencéapproaches" as the input or index
approaches somaluelLimits are essential toalculus(andmathematical analysia
geneal) and are used to define continutigrivatives, andhtegrals.

The concept of amit of a sequences further generalized to the concept of a limit of
atopological net, and is closely relateditoit anddirect limitin category theory.

In formulas,a limit is usually written as

limf(n) =L

nA c

and is read as "the limit &fof n asn approaches equald.”. Here "lim" indicategimit,
and the fact that functid(n) approaches the limit asn approaches is represented by
the right mrrow (YY), as i

f(n)=L

4.7 Real functions Continuity

We are now ready to define the concept of a function being continuous. The idea is that
we want to say that a function is continuous if you can draw its graph without taking your
pencil off the page. But sometiméhis will be true for some parts of a graph but not for




others. Therefore, we want to start by defining what it means for a function to be

continuous at one point. The definition is simple, now that we have the concept of limits:

Definition: (continuityat a point)

If f(x) is defined on an open interval containmgthenf(x) is said to be continuous @t
if and only if

Lim f(x) = f(c)

XA C

Note that forf to be continuous a, the definition in effect requires three conditions:
1. thatf is definedatc, sof(c) exists,
2. the limit asx approaches exists, and
3. the limit andf(c) are equal

If any of these do not hold thénms not continuous at

The idea of the definition is that the point of the graph correspondingitbbe close to

the pointof the graph corresponding to neasbyalues. Now we can define what it
means for a function to be continuous in general, not just at one point.

Definition: (continuity)

A function is said to beontinuous on(a,b)if it is continuous at every point ofi¢
interval(a,b).

We often use the phrase "the function is continuous” to mean that the function is
continuous at every real number. This would be the same as saying the function was
continuouson-, D), but it i s a bi tontimnouse conyv

Note that, by what we already know, the limit of a rational, exponential, trigonometric or
logarithmic function at a point is just its value at that point, so long as it's defined there.
So, all such functions are continuous wherever thegfiaed. (Of course, they can't be
continuous where they're not defined!)

4.8 Derivatives

The derivative of a function of a real variable measures the sensitivity to change of a
quantity (a function value or dependent variable) which is determined Hdyeartptantity

(the independent variable). Derivatives are a fundamental tool of calculus. For example,
the derivative of the position of a moving object with respect to time is the object's
velocity: this measures how quickly the position of the objectgemmhen time is
advanced.

Relative to a hyperreal extensiorCRR* of the real numbers, the derivative of a real
function y = f(x) at a real point x can
I nfinitesi mal axf(x).Wdrethe @atusalextensidn OfX te thesex )
hyperreals is still denoted Here the derivative is said to exist if the shadow is
independent of the infinitesimal chosen.

en

en



It is all about slope!

Slope =Change in ¥hange in X
Changein X

wY

We can find araverageslope between two poin i

15

averoge slope =

24
15

But how do we find the slops a point?

There is nothing to measure!

But with derivatives we use a small difference

... then have ishrink towards zero.




Let us Find a Derivative!

We will use the slope formula:

Slope =Change in YZhange in X= qy/ogx
to find the derivative of a furion y = f(x)

X changes fronx to x+gx
y changes fronf(x) to f(x+qx)

Follow these steps:

o
’f X £(x+ AX)
;ﬁx)
— AX | -—
A Fill in t byops=f(s+tpo)p eigpd fo(rxmu |l a:
A Simplify it as best we can,

A T h e mx shrink tewards zero.
Here we go:
Example: the functiof(x) = x2

We know f(x) = %, and can calcul ate f (x+@x)

Start with: f (x+@x) 2= ( x+@px)

Expand 2 (fx( x+Pgpo@)x =k + ( gpx)

The slope formulais{ f ( x+px) 1 f ( x) } / ox

Put in f(x+mpx) and f (x):

{x2+ 2 x X1 Ax/ (qex )

Simplify (x&): and 1T x2 can

= {2x opx + (opx) 2}/ px

Simplify more (divide2xt h++ oqoxgh by o@x) :
And then as @x head® towards 0 we get:
Result: the derivative of is 2x

We writedx instead of' gx heads towards 0'; so "the derivative of" is commonly

d
written dx




d

dx X2 =2X

"The derivative ok? equals2x"
or simply "d dx ofx? equals2x"

YA
/
6 /-
5 "
4 Q)
3 /&
2|2
1 .';f
N1 i
I
>
1.9 ;ﬂ 234 y
d

What doesdx X2 = 2Xmean?

It means that, for the functior?,xhe slope or "rate of change" at any poirtxs
So whenx=2 the slope i£x = 4, as shown here:

Or whenx=5 the slope i£x = 1Q and so on.

Note: sometimeg 0 (s ml$o used for "the derivative of":

fo(x) = 2x
"The derivative off(x) equal2x"

4.8 Integrals

Integrationcan be used to find areas, volumes, central pc
and many useful things. But it is often used td finearea
under the graph of a functionlike this:




Ay
The area can be found by adding slices dipgroach zero
in width:

And there ardRules of Integratiomhat help us get the
answer.

Notation
Slices mc}hg X

The symbol for "Integral” is a stylish C{ L/
s J 2X dx

(for "Sum’, the idea of summing
slices): Function we want

to inhgm’re

After the Integral Symbol we put the function we want to find the integral of (called the
Integrand),

and then finish witldx to mean the slices go in the x direction (and approach zero in
width).

Infegral Symbol

Definite Integral
A Definite Integral has start and end values: in other words thereiistarval (a to b).

The values are put at the bottom and top of the "S", like this:

Ay Ay

" b
) d [0 d

Indefinite Integral Definite Integral

(no specific values) (fromatob)
We can find the Diite Integral by calculating the Indefinite Integral at pomt&ndb,
then subtracting:




Example:

The Definite Integral, from 1 to 2, oRx dx:

2
f 21 dr
1

Thelndefinite Integral is:U2 x  d&C = X
7 Atx=1:U2 x 18#C
1 Atx=22U2 x 28+C

Subtract:

(22+ C)2+1C) (1

2+ C2n a

4 1 C1l1=3C

And "C" gets cancelled out ... so with Definite Integrals we can ignore C.

In fact we can give the answer directly like this:

2
f2rd1222—1?:3
1

We can check that, by calculating the area of the shape:
Yes, it has an area of 3.

Let's try another example:




—— y=cos(x)

X
| 05 1 >

The Definite Integral, from 0.5 to 1.0, obs(x)dx:

f}l cos(x) dx

5
(Note: x must be imadians)

ThelndefinitelntegralissUc os ( x) d& = sin(x) +
We can ignore C when we do the subtraction (as we saw above):

1
f cos(z)dr = sin(1)
0

.0

0. 841.
0.362...

5.1 LINEAR ALGEBRA

vector spaces

A vector space (also called a linear space) is a collection of objects called vebioinsmay be
added together and multiplied ("scaled") by numbers, called scalars in this context. Scalars are
often taken to be real numbers, but there are also vector spaces with scalar multiplication by
complex numbers, rational numbers, or generallyfeag. The operations of vector addition and
scalar multiplication must satisfy certain requirements, called axioms, listed below.

Euclidean vectors are an example of a vector space.

A scalarhas onlymagnitude(size):

3.044, 17 and 21 are scalars

Distance speedtime, temperaturemassjength,area,volume, density, charge,
pressureenergy work andpowerare all scalars.

A vector hasmagnitude anddirection:

Displacementyelocity, accelerationforce andmomentum are allvectors.




And watchout for these special words:
.@,ﬂ e
X,0 - =

0"

Nl

Q5 N
'

Distance vs Displacement
7 Distance is a scalar ("3 km")
71 Displacement is a vectdt3 km Southeast")
You can walk a long distance, but your displacement may be small (or zero if you return to
the start).
Speed vs Velocity

1  Speed is how fast something moves.

1 Velocity is speed with direction.
Saying Ariel the Dog runs & km/h (kilometers per hour) is a speed.
But saying he run8 km/h Westwardsis a velocity.

Notation

A vector is often written ifold, like a or b so we know it is not acalar:
f socis a vector, it has magnitude and direction
9 butcisascalar, like 30ori12.4

Example: kb is actually the scalar k times the vedbor

A_ a=AB

\B

A vector can also be written as the letters of its head andithian arrow above it, like this:
Using Scalars

Scalars are easy to use. Just treat them as normal numbers.

Example: 3 kgr 4 kg = 7 kg

Using Vectors

We can add two vectors by joining them héadhil:

F |




We can subtract one vector from another:
1 first wereverse the direction of the vector we want to subtract,
1 then add them as usual:

-b

atb
We can multiply a vector by a scalar (called "scaling" a vector):
Example: multiply the vectan = (7,3) by the scalar 3

i |

m a=3m = (3x7,3x3) = (21,

It still points in the same direction, but is 3 times longer
(And now you know why numbers are called "scalars", because they "scale" the vector up or
down.)

Polar or Cartesian

A vector can be in:
f magnitude and direction (Polar) form,
1 orinx and y(Cartesian) form

Like this:
Y| y| &)
<=> Yy

Vectora in Polar Vectora in Cartesian
Coordinates Coordinates




5.2 Multiplying a Vector by a Vector (Dot Product and Cross
Product)

a
b How do wemultiply two vectorsogether? There is more than o
way!
6 1 The scalar obot Producfthe result is a scalar).

1 The vector oCross Produdfthe result is a vector).

List of Numbers

So a vector can be thought of alistnumbers
1 2 numbers for 2D space, such as (4,7)
1 3 numbers for 3D space, such as (1,4,5)

5.3 Scalars, Vectors and Matrices

And when we includematrices we get this interesting pattern:

1 A scalaris a number, like, -5, 0.368, etc
1 A vectoris alist of numbers (can be in a row or column),
1 A matrix is anarray of numbers (one or more rows, one or more columns).

Scalar Vector Matrix
24 [2 -8 7] 6 4 24
row 1 -9 8

-6

ar
column | _4
27

row(s) x column(s)

In fact avector is also a matrix Because a matrix can have just one row or one column.

So the rules that work for matrices also work for vectors.




Matrices

A matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in
rows and olumns. For example, the dimensions of matrix (1) are 2 x 3 (read "two by three"),
because there are two rows and three columns.

A Matrix is an array of numbers:

6 4 24
1 -9 8
A Matrix (This one has 2 Rows and 3 Columns)

We talk about onenatrix , or severamatrices.

There are many things we can do with them ...

Adding

To add two matrices: add the numbers in the matching positions:

3 8 +40 _ |7 8
4 6 1 -9 |5 -3

These are the calculations:

3+4=7 8+0=8
4+1=5 6-9=3

The two matrices must be the same size, i.e. the rows must match in size eolditims must
match in size.

Example: a matrix witl3 rows and5 columnscan be added to another matrix3ofows and5
columns.

But it could not be added to a matrix wRhrows and4 columns(the columns don't match in
size)




Negative

The negative of a atrix is also simple:

2 -4 _[-2 4
7 10|~ |-7-10

These are the calculations:

(2)=2 (4)=+4
(7)=-7 -(10)=10

Subtracting

To subtract two matrices: subtract the numbers in the matching positions:

3 8 4 07 _[-18
4 6 1-9] 7|3 15

These are the calculations:

3-4=1 8-0=8

4-1=3 6-(-9)=15
Note: subtracting isictually defined as thaddition of a negative matrix: A +B)
Multiply by a Constant

We can multiply a matrix by some value:




4 0 —_ 18 0
1 -9 | 2-18

These are the calculations:

2x4=8 2x0=0

2x1=2 2x-9=18
We call the constant scalar, so officially this is called "scalarmultiplication".
Multiplying a Matrix by Another Matrix

But to multiply a matrixoy another matrix we need to do the "dot product” of rows and columns
... what does that mean? Let us see with an example:

To work out the answer for thHest row and1st cobmn:

1237 (75| _[s8
45 6 2101 =
11 12

The "Dot Product" is where waultiply matching members, then sum up:
(1, 2, 3) A (7, 9, 11) = 117 + 219 + 3111 =

We match the 1st members (1 and 7), multiply them, likewise for the 2nd members (2 and 9) and
the 3rd members (3 and 11), and fipallm them up.

Want to see another example? Here it is for the 1st roZash@olumn:




237 |7 5] _[58 64
5 6 9 10| =

1112
(1, 2, 3) A (8, 10, 12) = 118 + 2110 + 3112 = 614
We can do the same thing for thed row and1st column
(4, 5, 6) A (7, 9, 11) = 417 + 519 + 6111 = 139

And for the2nd row and2nd column:

(4, 5, 6) A ( 8, 10, 12) = 418 + 5110 + 6112 = 1E5
And we get:
1237 78] _[58 64
4 5 6 9 101 = |139 154
11 12
Dividing

And what about division? Well wdon't actually divide matrices, we do it this way:
A/B=A x (1/B) = A x B!

whereB-! means the "inverse" of B.

So we don't diide, instead wenultiply by an inverse.

Transposing

To "transpose" a matrix, swap the rows and columns. We put a "T" in the tojhaigdhicorner to
mean transpose:




T
6 4 24 3_;
1 -9 8

24 8

Notation

A matrix is usually shown by eapital letter (such as A, or B)
Each entry (ofelement") is shown by wer case letterwith a "subscript" ofow,column:

A _ a,, a;, 4,3

ﬂ!.l 02,2 u2.3

6 a Rows and Columns
So which is the row and which is the column?
1 Rows galeft-right

1 Columns gaup-down
To remember that rows come before columns use the acst :

Columns go &,
up and down

Example

6 4 24
1 -9 8

Here are some sample entries:
b1,1 = 6 (the entry at row 1, column 1 is 6)
by 3= 24(the entry atrow 1, column 3 is 24)

b, 3= 8(the entry at row 2, column 3 is 8)




Determinant of a Matrix

The determinant of a matrix isspecial numberthat @an be calculated from a square matrix.

3 8
4 6

A Matrix (This one has 2 Rows and 2 Columns)

The determinant of that matrix is (calculations are explained later):
316 1 814 71=1418 1 32 =

What is it for?

The determinant tells us things about the matrix that are usefysiems of linear equations,
helps us find thénverse of a matrix, is useful in calculus and more.

Symbol

The symbol for determinant is two vedal lines either side.
Example:

|A] means the determinant of the matix

(Exactly the same symbol adsolute value.)

Calculating the Determinant

First of all the matrix must bgquare (i.e. have the same number of rows as columns). Then it is
just basicarithmetic. Here is how:

For a 2x2 Matrix

For a2x2 matrix (2 rows and 2 columns):

a b

Azcd

The determinant is:

|A] = ad- bc
"The determinant of A equals a times d minus b times c"




It is easy to remember when you think of a ct

1 Blue means positive (+ad), X

1 Redmeans negativelfc)

Example:

_l4 6
B = 3 8

|B| = 4x8- 6x3
= 3218
=14

For a 3x3 Matrix

For a3x3 matrix (3 rows and 3 columns):

a b ¢
A=|d e f
g h i

The determinant is:

|A] = a(ei- fh) - b(di - fg) + c(dh- eg)
"The determinant of A equals ... etc"

It may look complicaté, butthere is a pattern

a, b <
=<

To work out the determinant of3x3 matrix;

1 Multiply a by thedeterminant of the 2x2 matrix that isnot in a's row or column.
1 Likewise forb, and forc
1 Add them up, but remember thabas a negative sign!




As a formula(rememier the vertical barg| mean "determinant of!")

Al=a- fi { —b-‘j { +c- j fi
"The determinant of A equals a times the determinant of ... etc"
Example:
6 1 1
C=14-25
2 8 7

|C| = 6x(-2X7 - 5x8) - 1X(4%7- 5x2) + 1X(4x8- -2x2)
= 6%(-54) - 1x(18) + 1x(36)
=-306

5.5Eigenvalues and Eigenvectors

The eigenvalue problem is a problem of considerable theoretical interest an@mgieg
application. For example, this problem is crucial in solving systems of differential equations,
analyzing population growth models, and calculating powers of mafiicesder to define the
exponential matrix). Other areas such as physics, sociology, biology, economics and statistics
have focused considerable attention on "eigenvalues" and "eigenveabtarspplications and

their computations. Before we give therf@l definition, let us introduce these concepts on an
example.

Example. Consider the matrix

1 2 1
A= 6 -1 0
-1 -2 -1




Consider the three column matrices

1 -1 2
C1 = 6 ) Cz = 2 , and Ca = 3
—-13 1 -2
We have
(0 4 6
AC1 = 0] . ACz = —8 ) and ACa = 9
0] —4 —6

In other words, we have

AC1 = l}C’l, ACQ = —402., and ACa - 303.

Next consider the matriR for which the columns ar€,, C,, andCs, i.e.,

1 -1 2
P = 6 2 3
-13 1 -2

We havede{P) = 84. So this matrix is invertibl&asy calculations give



1 -7 0 =7
P‘1=8—4 —27 24 9 |.

32 12 8§

Next we evaluate the matriX*AP. We leave the details to the reader to check that we have

1 -7 0 =7 1 2 1 1
o 27 24 9 6 -1 0 6
32 12 8 -1 -2 -1 -13

In other words, we have

0 00
P'AP=|0 -4 0 |.

0 03

Using the matrix multiplication, webtain

0 00
A=P| 0 -4 0 | P!

0 03

-1
2
1

2

3
-2

)

0 00
0 -4 0
0 03

) |



which implies thatAis similar to a diagonal matrixn particular, we have

0 0 0
A*=P| 0 (-4 o |P!
0 0 3"
n=12---
for . Note that it is almost impossible to fidd® directly from the original form

of A

This example is so rich of conclusions that many questions inthesselves in a natural way.

For example, given a square matixhow do we find column matrices which have similar
behaviors as the above ones? In other words, how do we find these column matrices which will
help find the invertible matrif such thaP*APis a diagonal matrix?

From now on, we will call column matricegctors. So the above column matric€s, C,,
andCs are now vectors. We have the following definition.

Definition. Let Abe a square matrix. A nexero vectorC is called areigenvectorof Aif and
only if there exists a number (real or compl)h,)such that

AC = AC.

If such a numbe A exists, it is called amigenvalueof A The vectoKC is called eigenvector
associated to the eigenval A

Remark. The eigenvecto€ must be nofzero sinceve have

AO=0=210

for any numbe.A .




Example. Consider the matrix

1 2 1
A= 6 -1 0
-1 -2 -1

We have seen that

AC] = U‘Cl, A‘Cﬂ = —402., and A'Ca = 303

where
1 -1 2
Cl = 6 . Cg = 2 . and Ca = 3
—-13 1 -2

SoC; is an eigenvector oA associated to the eigenvalue@.is an eigenvector oA associated
to the eigenvalued while Cs is an eigenvector oA associated to the eigenvalue 3.

It may be interesting to know whether we found all the eigenvaludsnathe above example. In
the next page, we will discuss this question as well as how to find the eigenvalues of a square
matrix.




6.1 Algebra

6.2 Group

A group is asetcombined with amperation
So for example, the set oitegerswith addition
But it is a bit more complicated than that. We can't say much if we just know there is a set and an
operator. What more could we describe? We need more infiormatout the set and the
operator. This is why groups have restrictions placed on them. That is, they have more properties.
Formal Definition of a Group
A group is a set G, combined with an operation *, such that:
1. The group contains ddentity
2. The groupcontainsinverses
3. The operation igssociative
4. The group ilosedunder the operation.
Let's look at those one at a time:

1. The group contains an identity.If we use the operation on any element &
the identity, we will get that element back.
For theintegersandaddition the identity is "0"Because 5+0 =5 and 0+5 =

In other words it leaves other elements unchanged when combined with them.

There is only one identity element for every group

The symbol for the identity elementesor sometimes (But you need to start seeing 0 as a
symbol rather than a number. O is just the symbol for the identity, just in the saredswi\s

defined that way. In fact, many times mathematicians prefer to use O rather than e because it is
much more natural.

Formal Statement
There exists arin the set G, such that ag’= a ande * a = a, for all elements a in G

2. The group contains inverseslf we have an element of the group, there'
another element of the group such that when we use the operatdhai bo
them, we geg, the identity.

For theintegersandaddition the inverse of 5 is5. (because 5 +5 = 0)

In just the same way, for negative integers, the inverses are poshiveS.= 0, so the inverse of
-5is 5. In fact, if a is the inverse bf then it must be that b is the inverse of a.

Inverses are unique. You can't name any other number x, such that 5 + x = 0 ¥esides
Make a note that while there exists only athentity for every single element in the
group, each element in the grougshedifferent inverse

The notation that we use for inverses-is 8o in the above examplel a b. In the same
way, if we are talking about integers and additioh=55.




Formal Statement
For all a in G, there exists b in G, such that a* b =celaha = e.

3. Associative.You should have learned ab@gsociativevay back in
basic algebra. All it means is that the order in which we do operatio

) doesn't mder.
a*(b*c)=(@*b)*c

Notice that we still went a...b...c. All that changes was the parentiVéstisget back to
this later ...

Formal Statement
Foralla,b,andcin G,a*(b*c)=(a*b)*c

4. Closed under the operationimagine ya are closed inside a huge
box. When you are on the inside, you can't get to the outside. In th
same way, once you have two elements inside the group, no matte
the elements are, using the operation on them will not get you outs
the group

If we have two elements in the group, a and b, it must be the case that a*b is also in the
group. This is what we mean by closed. It's called closed because from inside the group,
we can't get outside of it.

And as with the earlier properties, the same is\rifie the integers and addition. If x and

y are integers, X + y = z, it must be that z is an integer as well.

Formal Statement
For all elements a, b in G, a*b is in G

So, if we have aetand anoperation, and can satisfy every one of those conditiores, w
can say this is &roup.

6.3 Field

a field is one of the fundamental algebraic structures used in abstract algebra. It is a nonzero
commutative division ring, or equivalently a ring whose nonzero elements form an abelian group
under multiplication. Asuch it is an algebraic structure with notions of addition, subtraction,
multiplication, and division satisfying the appropriate abelian group equations and distributive
law. The most commonly used fields are the field of real numbers, the field of comypldrers,

and the field of rational numbers, but there are also finite fields, algebraic function fields,
algebraic number fields-gdic fields, and so forth.



https://www.mathsisfun.com/associative-commutative-distributive.html

A simple example of a field is the field of rational numbers, consisting of numbers which can be
written as fractions a/b, where a and b are inte
fraction is simply 1Ta/b, and the multiplicatiwve

latter, note that bla/b=ba/ab = 1

Example of Filed with Fou Elements:

Ol |[AIB||+|0]|I |A|B
O|O0 O|O O olo 1 |lA B
I 1O I |AB 1|1 olB A
A O A BJ|I A A B OI
B OB I | A B B A I O

In addition to familiar number systems such as the rationals, there are other, less immediate
examples of fields. The following arple is a field consisting of four elements called O, I, A

and B. The notation is chosen such that O plays the role of the additive identity element (denoted
0 in the axioms), and | is the multiplicative identity (denoted 1 above). One can check that all
field axioms are satisfied. For example:

A-(B+A)=A-1=A whichequal®-B+A-A=1+B=A, as required by the distributivity.

The above field is calledfanite field with four elements, and can be denokedField theory is
concerned witlunderstanding the reasons for the existence of this field, defined in a faifgcad
manner, and describing its inner structure. For example, from a glance at the multiplication table,
it can be seen that any naaro element (i.e., I, A, and B) is a povad A: A = AL, B=A?=A .

A, and finallyl = A= A - A - A. This is not a coincidence, but rather one of the starting points of
a deeper understanding of (finite) fields.

6.4 Polynomials

A polynomial is an expression consisting of variables and icgeits which only employs the

operations of addition, subtraction, multiplication, and-negative integer exponents. An

example of a polynomi al of a single variable x i
+ 2xyz2 1 yz + 1.

A polynomial loks like this:

4xy? +3x -5

example of a polynomial
this one has 3 terms




Polynomial comes fronpoly- (meaning "many") anehomial(in this case meaning
"term") ... so it says "many terms"
A polynomial can have:

constants(like 3, -20, or%5)
variables (like x andy)

exponents(like the 2 in ), but only0, 1, 2, 3, ..etc are allowec

that can be combined usiagdition, subtraction, multiplication and division ...
... except ...
... not division by a variabl¢so something lik&/x is right out,

So:
A polynomid can have constants, variables and exponents,
but never division by a variable.

Polynomial or Not?

exponents: 0,1.2,...
5xy? - 3x + 5y? - 3

2

terms X +2

A Polynomial Not Polynomials

Theseare polynomials:
3X
X-2
-6y? - ("/9)x
3xyz + 3xyz- 0.1xz- 200y + 0.5
512\0+ 99wP
T 5
(Yes, even "5" is a polynomiabne term is allowed andit can even be just a constant!)
And these araot polynomials
T 3xyZ2is not, because the exponent-2"(exponents can only be 0,1,2,...)
1 2/(x+2)is not, because dividing by a variable is not allowed
1 1/xis not either
& Xs not, because the exponent is "¥2" [@aetional exponents)
But theseare allowed:
1 x/2is allowed because you can divide by a constant
1 also3x/8for the same reason
1 & 2s allowed, because it is a constant (= 1.4142...etc)

=A =4 =8 -4




Monomial, Binomial, Trinomial
There are special names for polynomials with 1, 2 or 3 terms:

3xy? 5x - 1 3x +by? - 3
Monomial (1 term) Binomial (2 terms) Trinomial (3 terms)

There is also quadrinomial (4 terms) and quintinomial (5 terms),
but those names are not often used
Polynomials can have as many terms as nedugchot an infinite number of terms.

Variables
Polynomials can have no variable at all

Example:21is a polynomial. It has just one term, which is a constant.
Or one variable

Example:x*-2x2+x has three terms, but only one variable (x)
Or two or more variables

Example:xy*-5x?z has two termsand three variables (x, y and z)
What is Special About Polynomials?

Because of the strict definition, polynomials assy to work with
For example we know that:
1 If you add polynomialyou get a polynomial
1 If you multiply polynomialsyou get a polynoial
So you can do lots of additions and multiplications, and still have a polynomial as the result.
Also, polynomials of one variable are easy to graph, as they have smooth and continuous lines.

Example:x*-2x2+x

2 1

O s See how nice and
-2 2 smooth the curve it

a2

You can alsdalivide polynomialgbut the result may not be a polynomial).




6.5 Degree

The degreeof a polynomial with only one variable is ttagest exponentof that variable.
Example:

Ar® — -3 The Degree i8 (the largest exponent &

For more complicatedases, reaDegree (of an Expression).

Standard Form

The Standard Form for writing a polynomial is to put the terms with the highest degree first.
Example: Put this in Standard Fornx?3 7 + 4x® + x8

The highest degree is 6, so that goes first, theraBd2hen the constant last:

X8+ 43+ 3x?-7

You don't have touse Standard Form, but it helps.

7.1 PROBABILITY THEORY

7.2 Random Events

In probability theory,aneventthat undergivenconditionsmay or may not occurandthathasa ce
rtain probabilty p (0 Op O 109f occurrencaunderthe givenconditions.A randomeventA canbe
seerto haveacertainprobability from the behaviorofits frequencyif theindicatedconditionsoc
cur n times,while A occurspreciselymtimes,thenthe frequencym/nwill becloseto p whennis |
arge.

Example Events:
71 Getting a Tail when tossing a coin is an event
1 Rolling a"5" is an event.

An event can include several outcomes:
1 Choosing a "King" from a deck of cards (any of the 4 Kingsg)lsoan event
7 Rolling an "evemumber" (2, 4 or 6) is an event

Events can be:
71 Independent(each event isot affected by other events),
1 Dependent(also called "Conditional", where an evénaffected by other events)
1 Mutually Exclusive (events can't happen at the same time)




7.3 Independent Events

Events can be "Independent”, meaning each evewtiaffectedby any other events.
This is an important idea! A coin does not "know" that it came up heads before ... each toss of a
coin is a perfect isolated thing.

Example: You toss aoin three times and it comes up "Heads" each time ... what is the chance
that the next toss will also be a "Head"?

The chance is simply 1/2, or 50%, just like ANY OTHER toss of the coin.

What it did in the past will not affect the current toss!

Some peom think "it is overdue for a Tail", bueally truly the next toss of the coin is totally
independent of any previous tosses.

Saying "a Tail is due”, or "just one more go, my luck is due" is calledGambler's Fallacy
Dependent Events

But some events oabe "dependent” ... which means tluey be affected by previous events
Example: Drawing 2 Cards from a Deck
After taking one card from the deck there ke®s cardsavailable, so the probabilities change!

Let's look at the chances of getting a King.
For the 1st card the chance of drawing a King is 4 out of 52
But for the 2nd card:
1 If the 1st card was a King, then the 2nd cangsslikely to be a King, as only 3 of the 51
cards left are Kings.
7 If the 1st card wasot a King, then the 2nd card is diily more likely to be a King, as 4
of the 51 cards left are King.
This is because we aremoving cardsfrom the deck.

Replacement: When we put each chadk after drawing it the chances don't change, as the
events aréndependent
Without Replacementfhe chances will change, and the eventdependent

Tree Diagrams

When we have Dependent Events it helps to make a "Tree Diagram”

Example: Soccer Game

You are off to soccer, and love being the Goalkeeper, but that depends who is the Coach today:
1 with Coach Sam your probability of being Goalkeepdl.&
1 with Coach Alex your probability of being Goalkeepei3

Sam is Coach more often ... about 6 of every 10 games (a probabiitg).of

Let's build the Tree Diagram

Start with the Coaches. We kn@a6 for Sam, so it must be 0.4 for Alex (the probabilities must
add to 1):




Sam

\

Then fill out the branches for Sam (0.5 Yes and 0.5 No), and then for Alex (0.3 Yes and 0.7 No):

/f,iifﬂr Yes
Sam

y L—\Eh\* r‘\..;:
D\

Now it is neatly laid out we can calculate probabilities (read more at "T seggdins").

Mutually Exclusive

Mutually Exclusive means we can't get both events at the same time.
It is either one or the other, babt both

Examples:
1 Turning left or right are Mutually Exclusive (you can't do both at the same time)
1 Heads and Tails atdutually Exclusive
7 Kings and Aces are Mutually Exclusive

What isn't Mutually Exclusive

1 Kings and Hearts aneot Mutually Exclusive, because we can have a King of Hearts!
Like here:

Aces

Aces and Kings are Hearts and Kings are
Mutually Exclusive not Mutually Exclusive




7.3 Probability Spaces

a probability space or a probability triple is a mathematical construct that models a real
world process (or "experiment") consisting of states that occur randomly. A probability
space is constructed with pexific kind of situation or experiment in mind. One

proposes that each time a situation of that kind arises, the set of possible outcomes is the
same and the probabilities are also the same.

A probability space consists of three parts:

1. A samp |l e, wsioh s heset ofall possible outcomes.
2. A set of event§ where each event is a set containing zero or more
outcomes.
3. The assignment of probabilities to the events; that is, a funeticom
events to probabilities.
Example:

The fair coin is tossethree times. There are 8 possible outcorges:{HHH, HHT, HTH, HTT,

THH, THT, TTH, TTT} (here AHTHO for exampl e mean
the second time tails, and the last time heads again). The complete information is deschibed by t

U-algebraF = 21 of 28 = 256 events, where each of the events is a subset of

Alice knows the outcome of the second toss only. Thus her incomplete information is described by the

partition

0 =AcS Ao ={HHH, HHT, THH, THT} S {HTH, HTT, TTH, TTT},

whereS is thedisjoint union and the correspondingalgebra

FAIice = {{}, A 1, AZ, q}

Brian knows only the total number of tails. His partition contains four parts:
0 =BoS B1S B2 S Bs={HHH} S{HHT, HTH, THH} S {TTH, THT, HTT} S{TTT};
accordingly, hisl-algebraF g;., contains24 = 16 events.

7.5 Random Variables

In probability and statistics, a random variable, randpantity, aleatory variable or stochastic
variable is a quantity whose value depends in some cldefiged way on a set of possible
random events. A random variable can take on a set of possible different values (similarly to
other mathematical variads), each with an associated probability.

In short we can say, A Random Variable is a sgtoskible valuedrom a random experiment.

Example:

Tossing a coin: we could get Heads or Tails.
Let's give them the valud$¢eads=0andTails=1 and we have a Rdom Variable "X":




Random  Possible
Variable Values

In short:
X={0, 1}
Note: We could choose Heads=100 and Tails=150 or other values if weltwsuatlir choice.
So:
1 We have amxperiment(such as tossing a coin)
1 We givevaluesto each event
1 Theset of valuess aRandom Variable

7.6 Moments and Expectations

In mathematics, a moment is a specific quantitative measure, used in both mechanics and

statistics, of the shape of a set of points. If the points represent mass, then the zeroth moment is

the total mass, the first moment died by the total mass is the center of mass, and the second

moment is the rotational inertia. If the points represent probability density, then the zeroth

moment is the total probability (i.e. one), the first moment is the mean, the second central

moment § the variance, the third moment is the skewness, and the fourth moment (with

normalization and shift) is the kurtosis. The mathematical concept is closely related to the

concept of moment in physics.

For a bounded distribution of mass or probability,dbbection of all the moments (of all orders,

from O to B) uniquely determines the distributioa

The expected valuglor mean) of X, where X is a discrete random variable, is a weighted average
of the possible values that X can take, each value beingtedighcording to the probability of
that event occurring. The expected value of X is usually written as E(X) or m.

1 E(X)=SxP(X=Xx)
So the expected value is the sum of: [(each of the possible outcomes) x (the probability of the
outcome occurring)].
In more concrete terms, the expectation is what you would expect the outcome of an experiment
to be on average.

Example

What is the expected value when we roll a fair die?

There are six possible outcomes: 1, 2, 3, 4, 5, 6. Each of these has a probabfityfof

occurring. Let X represent the outcome of the experiment.

Therefore P(X = 1) = 1/6 (this means that the probability that the outcome of the experiment is 1
is 1/6)

P(X = 2) = 1/6 (the probability that you throw a 2 is 1/6)

P(X = 3) = 1/6 (the probadlity that you throw a 3 is 1/6)




P(X =4) = 1/6 (the probability that you throw a 4 is 1/6)

P(X =5) = 1/6 (the probability that you throw a 5 is 1/6)

P(X = 6) = 1/6 (the probability that you throw a 6 is 1/6)

E(X) = 1xP(X = 1) + 2xP(X = 2) + 3xP(X = 3)4xP(X=4) + 5xP(X=5) + 6xP(X=6)

Therefore E(X) = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/G/2

So the expectation is 3.5 . If you think about it, 3.5 is halfway between the possible values the die
can take and so this is what you should have expected.

7.7 Probability Distributions

A random variable is a variable that is subject to variations due to random chance. One can think
of a random variable as the result of a random experiment, such as rolling a die, flipping a coin,
picking a number from a given intel.

The idea is that, each time you perform the experiment, you obtain a sample of the random
variable.

Since the variable is random, you expect to get different values as you obtain multiple samples.
(Some values might be more likely than others naaniexperiment of rolling two sisided die

and recording the sum of the resulting two numbers, where obtaining a value of 7 is much more
likely than obtaining value of 12.)

A probability distribution is a function that describes how likely you willaithe different
possible values of the random variable.

It turns out that probability distributions have quite different forms depending on whether the
random variable takes on discrete values (such as numbers from the set
{1,2,3,4,5,6}{1,2,3,4,5,6}) otakes on any value from a continuum (such as any real number in
the interval [0,1][0,1]).

Despite their different forms, one can do the same manipulations and calculations with either
discrete or continuous random variables.

The main difference is usigljust whether one uses a sum or an integral.

Cumulative Distribution Function

The cumulative distribution function (CDF) of a re@lued random variable X, or just
distribution function of X, evaluated at x, is the probability that X will take a Veksthan or
equal to x.

In the case of a continuous distribution, it gives the area under the probability density function
from minus infinity to x. Cumulative distribution functions are also used to specify the
distribution of multivariate random varitas.
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From top to bottom, the cumulative distribution function of a discrete probability distribution,
continuous probability distribution, and a distribution which has both a contingotiam a
discrete part.

Discrete Probability Distribution

A discrete probability distribution is a probability distribution characterized bymbability
mass function. Thus, the distribution of arandom varidaediscrete, an&X is called adiscrete
random variable, if

Bo® O =1

As uruns through the set of all possible valueX.of discrete random variable can assume only
afinite or countably infinitenumber of values. For the number of potential values to be countably
infinite, eventhough their probabilities sum to 1, the probabilities have to decline to zero fast
enough.



https://en.wikipedia.org/wiki/File:Normal_Distribution_CDF.svg
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The probability mass function of a discrete probability distribution. The probabilities of
the singletong[1}, {3}, and {7} are respectively 0.2, 0.5, 0.3. A sedt containing any of these
points has probability zero.

For example, iPr(X=n) = 1/2forn=1, 2, ..., we have the sum of probabilities 1/2 + 1/4 + 1/8 +

Well-known discrete probability distributisrused in statistical modeling include feisson
distribution, theBernoulli distribution, thébinomial distribution, thegeometric distribution, and

the negative binomial distribution. Additionally, thikscrete uniform distributiois commonly

used incomputer programs that make egpedbability random selections between a numbers of
choices.

Continuous Probability Distribution

A continuous probability distribution is aprobability distributionthat has a cumulative
distribution function that is coimuous. Most often they are generated by havipgphability
density function. Mathematicians call distributions with probability density functibeslutely
continuous, since theicumulative distribution functionsbsolutely continuousith respect to
the Lebesgue measuee If the distribution ofX is continuous, theKX is called acontinuous
random variable. There are many examples of continuous probability distributimorsnal,
uniform, chi-squared, andthers.

T

(1
... of a continuous probability drdtution, ...

Intuitively, a continuous random variable is the one which can takatanuous range of

value® as opposed to a discrete distribution, where the set of possible values for the random
variable is at mostountable. While for a discrete disuition aneventwith probability zero is
impossible (e.g., rolling 31/8n a standard dice is impossible, and has probability zero), this is
not so in the case of a continuous random variable. For example, if one measures the width of an
oak leaf, the radt of 3%2cm is possible; however, it has probability zero because uncountably
many other potential values exist even betweemand 4cm. Each of these individual

outcomes has probability zero, yet the probability that the outcome will fall intotémreal (3

cm, 4 cm)is nonzero. This appareparadoxs resolved by the fact that the probability

thatX attains some value within anfinite set, such as an intervainnot be found by naively
addingthe probabilities for individual values. Formally ceavalue has aimfinitesimally small
probability, whichstatistically is equivalerib zero.



https://en.wikipedia.org/wiki/File:Discrete_probability_distrib.svg
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Formally, if X is a continuous random variable, then it hgsabability density functio&(x), and
therefore its probability of falling into a given intervadyga, b] is given by the integral

Pr{ aOXO0O®RpQe

Properties of Probability Distributions:

1 The probability distribution of the sum of two independent random variables is
theconvolution of each of their distributions.

1 Probability distrbutions are not aector spac@ they are not closed undi@mear
combinations, as these do not preserve magativity or total integrald but they
are closed underonvex combination, thus forming a convex suloé¢e space
of functions (or measures).




9.1 Some Important Links for Studies:

a. Introduction to Latex: http://www.latex-project.org/about/

b. Latex Tutorials: https://www.latex-tutorial.com/

c. Latex Video Tutorials: https://www.youtube.com/playlist?list=PLiD4EAB31D3EBC449

d. Introduction to Python: https://www.python.org/about/gettingstarted/

e. Tutorial to Learn Python: http://www.learnpython.org/

f. Video Tutorials for Learning Python: https://www.youtube.com/watch?v=cpPGobKHYKc

g. Introduction to Sage: http://doc.sagemath.org/html/en/tutorial/introduction.html

h. Tutorials for Learning Sage: https://doc.sagemath.org/html/en/tutorial/

i. Video Tutorials for Learning Sage: https://www.youtube.com/watch?v=La] GVZCxoVw

j. Introduction to R Language: https://www.r-project.org/ and https://cran.r-
project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

k. Tutorials for Learning R Language: http://www.r-tutor.com/r-introduction

1. Video Tutorials for Learning R Language:
https://www.youtube.com/watch ?v=iffR3fWv4xw&list=PLOU2XLYxmsIKgq Ofzt XeybpHvru-

TrqgAP&index=1

m. Introduction to Matlab: https://www.mathworks.com/videos/introd uction-to-matlab-
81592.html?s tid=gn loc drop

n. Tutorials for Learning Matlab: https://www.mathworks.com/support/learn-with-matlab-
tutorials.html

p. Video Tutorials for Learning Matlab: https://www.mathworks.com/products/matlab/videos.html

g. Introduction to Maple:

http://www.maplesoft.com/support/help/Maple/view.aspx?path=Programming Guide/ Chaptero1
r. Tutorials for Learning Maple: https://www.maplesoft.com/support/training/

s. Video Tutorials for Learning Maple:
https://www.maplesoft.com/support/training/trainingvideos maple.aspx
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Diff erent Math website resources:

1. https://www.hsmittweida.de/
2. http://faculty.simpson.edu/lydia.sinapova/www/cmsc250BN Weiss/Contents.htm
3. http://www.factindex.com/m/ma/mathematical_proof.html
4. https://www.wikipedia.org/
5. http://www.math.com/
6. http://www.onlinemathlearning.com/integers.html
7. http://plato.stanford.edu/entries/set-theory/basic-set-theory.html
8. https://www.mathsisfun.com/
AA study without Mathematics is a study wit!l

-Saki Billah

[www.sakibillah.com]

Good Luck!
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