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1.3 Preface 

The study method of Science subjects are mainly depend on Mathematics. 

Mathematics is the mother of all science. Every day we use mathematics and every 

invention or technology needs mathematics, so for the students of Engineering 

courses, Computer Science, Mathematics or other Science courses it is important 

to learn a Basic mathematics before starting the main subjects. This book is 

designed for them who are at beginner stage about learning mathematics. This is 

the first part and first edition therefore, I would appreciate if you have any 

suggestions, error corrections or advice to make this book better.  

I hope this book can help you to understand the basic math easily.  

 

Best regards,  

Saki Billah 

Author 

M.Sc. in Applied Mathematics, University of Applied Sciences, Mittweida-Germany 

B.Sc. in Computer Science & Engineering, Dhaka-Bangladesh 

Email: md.saki@gmail.com 

Web: www.sakibillah.com  
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2.1 Proportional Logic:  

Propositional calculus (also called propositional logic, sentential 

calculus, sentential logic, or sometimes zeroth-order logic) is the branch 
of logic concerned with the study of propositions (whether they are true or false) 

that are formed by other propositions with the use of logical connectives, and how 
their value depends on the truth value of their components. Logical connectives 

are found in natural languages. In English for example, some examples are "and" 

(conjunction), "or" (disjunction), "notò (negation) and "if" (but only when used to 
denote material conditional). 

The following is an example of a very simple inference within the scope of propositional 
logic: 

Premise 1: If it's raining then it's cloudy. 

Premise 2: It's raining. 
Conclusion: It's cloudy. 

Both premises and the conclusion are propositions. The premises are taken for granted 
and then with the application of modus ponens (an inference rule) the conclusion follows. 

As propositional logic is not concerned with the structure of propositions beyond the 

point where they can't be decomposed anymore by logical connectives, this inference can 
be restated replacing those atomic statements with statement letters, which are interpreted 

as variables representing statements: 
Premise 1: PĄ Q 

Premise 2: P 

Conclusion: Q 
The same can be stated succinctly in the following way: 

 PĄ Q, P|--  
When P is interpreted as ñIt's rainingò and Q as ñit's cloudyò the above symbolic 

expressions can be seen to exactly correspond with the original expression in natural 

language. Not only that, but they will also correspond with any other inference of 
this form, which will be valid on the same basis that this inference is. 

 # More Details about Propositional Calculus or Propositional Logic:  
Statements are sentences that claim certain things. 

Can be either true or false, but not both. 

Propositional logic ï deals with propositions 
Propositional constants: 

T ï true 
F - false 

Propositional variables ï can have T or F value. 

Atomic propositions: 
propositional constants 

propositional variables 
They cannot be further subdivided: "The sun is shining" 
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2.2 COMPOUND PROPOSITION S: 

Not atomic, contain at least one logical connective 

"The sun is shining and the sky is blue" 

 

Basic logical connectives: AND, OR, NOT 

 

Translating from English to symbols 

English Logic Example 

And, but AND ȿ It is hot and sunny 
A: It is hot 

B: It is sunny 
A ȿ B 

Not NOT ¬ It is not hot:    ¬ A 

Or (inclusive) OR V It is hot or sunny 

A V B 

Or (exclusive) A or B but not both It is either hot or sunny 

(A V B) ȿ â (A ȿ B) 

Neitheré nor â A ȿ â B It is neither hot nor sunny 
â A ȿ â B 

  

 

 

 

 

 

 

Connective pronounced Symbol in Logic 

Negation NOT ¬, ~ 

Conjunction AND ȿ 

Disjunction OR V 

Conditional if then Ÿ 

Biconditional if and only if « 

Exclusive or eitheréor but not both "+"  
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2.3 TRUTH TABLES 

 

Truth tables define formally the meaning of the logical connectives. 

Evaluating compound statements: by building their truth tables 
 

Negation (NOT, ~, ¬) 
 

   P   ~P 

------------- 

   T    F 

   F    T 

~P is true if and only if P is false 

 

Conjunction (AND, ȿ) 

 

 

 

 

 

 

 

 

Disjunction (inclusive 

or) (OR, V) 

 

 

 

Conditional, known also as implication (Ÿ) 

 

 
 

 
 

 

 

Biconditional (ó ) 

 

 

 

 

 

 

   P    Q   P ȿ Q 

------------------- 

   T    T    T 

   T    F    F 

   F    T    F 

   F    F    F 

 

P ȿ Q is true iff  both P and Q are true.  

In all other cases P ȿ Q is false 

   P    Q   P V Q 

------------------- 

   T    T     T 

   T    F     T 

   F    T     T 

   F    F     F 

P V Q is true iff  P is true or Q is true or 

both are true. 

P V Q is false iff  both P and Q are false 

   P    Q   P Ÿ Q 

------------------- 

   T    T     T 

   T    F     F 

   F    T     T 

   F    F     T 

The implication PŸ Q is false iff  P is 

true however Q is false. 

In all other cases the implication is true 

   P    Q   P « Q 

------------------- 

   T    T     T 

   T    F     F 

   F    T     F 

   F    F     T 

Pó Q is true iff P and Q have same 

values - both are true or both are false. 

If P and Q have different values, the 

biconditional is false. 
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Exclusive or ("+")  

 

 
  

 
 

 

 

 

 

2.4 LOGICAL EQUIVALENCE 

 

Definit ion: Two propositional expressions P and Q are logically equivalent,  
if they have same truth tables. We write P ſ Q. 

 

Commutative laws P V Q ſ Q V P 

P ȿ Q ſ Q ȿ P 

Associative laws (P V Q) V R ſ P V (Q V R) 

(P ȿ Q) ȿ R ſ P ȿ (Q ȿ R) 

Distributive laws: (P V Q) ȿ (P V R) ſ P V (Q ȿ R) 

(P ȿ Q) V (P ȿ R) ſ P ȿ (Q V R) 

Identity P V F ſ P, P ȿ T ſ P 

Negation P V ~P ſ T (excluded middle) 

P ȿ ~P ſ F (contradiction) 

Double negation ~(~P) ſ P 

Idempotent laws 

  

P V P ſ P 

P ȿ P ſ P 

De Morgan's Laws ~(P V Q) ſ ~P ȿ ~Q 

~(P ȿ Q) ſ ~P V ~Q 

Universal bound laws (Domination) P V T ſ T 

P ȿ F ſ F 

Absorption Laws P V (P ȿ Q) ſ P 

P ȿ (P V Q) ſ P 

Negation of T and F ~T ſ F, ~F ſ T 

  

 

   P    Q   P "+" Q 

------------------- 

   T    T     F 

   T    F     T 

   F    T     T 

   F    F     F 

P"+" Q is true iff P and Q have different 

values. 

If P and Q have same values, P"+" Q is 

false. 
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2.5 TAUTOLOGIES AND CONTRADICTIONS 

 

Definition:  A propositional expression is a tautology if and only if for all possible 

assignments of truth values to its variables its truth value is T 
Example: P V ¬ P 

If two expressions P and Q are equivalent, i.e. P ſ Q, then P « Q is a tautology. 
Definition : A propositional expression is a contradiction if and only if for all possible 

assignments of truth values to its variables its truth value is F 

Example: P ȿ ¬ P 
Implication  P Ÿ Q 

False only when P = T and Q = F 
True for all other values of P and Q 

Representing the implication by means of disjunction 

P Ÿ Q ſ â P V Q 
Example: "This textbook can be found in the library or in the bookstore. 

P = The book can be found in the library 
Q = The book can be found in the bookstore 

Rewrite P V Q as implication: ~P Ÿ Q 

If the book is not in the library then it is in the bookstore. 

Negation of conditional statements 
~(P Ÿ Q) = ~( ~ P V Q) = P ȿ ~Q 
Example: This textbook can be found in the library or in the bookstore. 

Negation: The book is not in the library and it is not in the bookstore. 

 

Comments: 

P Ÿ Q means: if P is true then Q is also true. 
The negation is: P is true, however Q is false. 

The negation of a conditional statement is a conjunction, not another if-then 

statement 

Which expressions when negated will result in conditional statements? 

Answer: a conjunction. 
Why? - the negation of a conjunction is a disjunction (De Morgan's laws) 

 

Any disjunction is equivalent to if-then statement. 

Example: 

The weather is stormy but schools are open. P ȿ Q 
P: The weather is stormy 

Q: Schools are open. 
Negation: ~( P ȿ Q) = ~P V ~Q = P Ÿ ~Q 

If the weather is stormy the schools are closed (not open). 

Converse, inverse, and contrapositive of P ŸQ 
Converse: Q Ÿ P (Change position) 

Inverse: ~P Ÿ ~Q (Change sign) 
Contrapositive: ~Q Ÿ ~P (Change both position and sign) 
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The implication is equivalent to its contrapositive. 
The inverse is equivalent to the converse. 

Only if and unless (will not be on the final) 

The expressions equivalent to P Ÿ Q are: 
P only if Q 

~Q only if ~P 
~P unless Q 

Syllogisms (Patterns of arguments , inference rules) 

Modus Ponens and Modus Tollens 
Modus ponens (method of affirming) 

(1) If P then Q 
(2) P 

(3) Therefore Q 

Example: 
If it is Sunday we go fishing. 

It is Sunday 
Therefore we go fishing 

Modus Tollens (method of denying) 

(1) If P then Q 
(2) ~Q 

(3) Therefore ~P 

Example: 
If it is Sunday we go fishing 

We do not go fishing 
Therefore it is not Sunday 

Modus ponens uses implication, modus tollens uses the contrapositive of the implication. 
Examples of invalid arguments: 

Inverse error 

If it is Sunday we go fishing 
It is not Sunday 

Therefore we do not go fishing 

 

 

 

Converse error 

If it is Sunday we go fishing 
We go fishing 

Therefore it is Sunday 

Disjunctive syllogism 
(1) P V Q 

(2) ~P 
(3) Therefore ~Q 

Example: 
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During the weekend we either go fishing or we play cards 
This weekend we did not go fishing 

Therefore, this weekend we were playing cards 

Hypothetical syllogism 
(1) P Ÿ Q 

(2) Q Ÿ R 
(3) Therefore P Ÿ R 

Example: 

If we win the game we will get much money. 
If we have money we will go on a trip to China. 

Therefore, if we win the game we will go on a trip to China 
 

 

2.6 METHOD OF PROOF 

 

In mathematics, a proof is a deductive argument for a mathematical statement. In 

the argument, other previously established statements, such as theorems, can be used. In 

principle, a proof can be traced back to self-evident or assumed statements, known 

as axioms, along with accepted rules of inference. Axioms may be treated as conditions 

that must be met before the statement applies. 

 

Methods of proof: 
In Mathematics, a proof is a demonstration that, given certain axioms, some statement of 

interest is necessarily true. 
Proofs employ logic but usually include some amount of natural language which of 

course admits some ambiguity. In the context of proof theory, where purely formal proofs 

are considered, such not entirely formal demonstrations are called "social proofs". The 
distinction has led to much examination of current and historical mathematical 

practice, quasi-empiricism in mathematics, and so-called folk mathematics (in both 
senses of that term). The philosophy of mathematics is concerned with the role of 

language and logic in proofs, and mathematics as a language. 

Regardless of one's attitude to formalism, the result that is proved to be true is a theorem; 
in a completely formal proof it would be the final line, and the complete proof shows 

how it follows from the axioms alone. Once a theorem is proved, it can be used as the 
basis to prove further statements. The so-called foundations of mathematics are those 

statements one cannot, or need not, prove. These were once the primary study of 

philosophers of mathematics. Today focus is more on practice, i.e. acceptable techniques. 
Some common proof techniques are: 

Direct proof: where the conclusion is established by logically combining the axioms, 
definitions and earlier theorems 

Proof by induction: where a base case is proved, and an induction rule used to prove an 

(often infinite) series of other cases 
Proof by contradiction: where it is shown that if some property were true, a logical 

contradiction occurs, hence the property must be false. 
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Proof by construction: constructing a concrete example with a property to show that 
something having that property exists. 

Proof by exhaustion: where the conclusion is established by dividing it into a finite 

number of cases and proving each one separately 
We also use the following proof techniques as well:  

A probabilistic proof should mean a proof in which an example is shown to exist by 
methods of probability theory - not an argument that a theorem is 'probably' true. The 

latter type of reasoning can be called a 'plausibility argument'; in the case of the Collatz 

conjecture it is clear how far that is from a genuine proof. Probabilistic proof is one of 
many ways to show existence theorems, other than proof by construction. 

If we are trying to prove, for example, "Some X satisfies f(X)", 
an existence or nonconstructive proof will prove that there is a X that satisfies f(X), but 

does not tell you how such an X will be obtained. A constructive proof, conversely, will 

do so. 
A statement which is thought to be true but hasn't been proven yet is known as 

a conjecture. 
Sometimes it is possible to prove that a certain statement cannot possibly be proven from 

a given set of axioms; For Example the continuum hypothesis. In most axiom systems, 

there are statements which can neither be proven nor disproven; Say for Gödel's 
incompleteness theorem. 

 
 

Description of the all proof methods are following with Examples:  

Direct proof 
In direct proof, the conclusion is established by logically combining the axioms, 

definitions, and earlier theorems. For example, direct proof can be used to establish that 
the sum of two even integers is always even: 

Consider two even integers x and y. Since they are even, they can be written 

as x = 2a and y = 2b, respectively, for integers a and b. Then the sum x + y = 2a + 2b = 
2(a+b). Therefore x+y has 2 as a factor and, by definition, is even. Hence the sum of any 

two even integers is even. 
This proof uses the definition of even integers, the integer properties of closure under 

addition and multiplication, and distributivity. 

Proof by mathematical induction 
Despite its name, mathematical induction is a method of deduction, not a form 

of inductive reasoning. In proof by mathematical induction, a single "base case" is 
proved, and an "induction rule" is proved that establishes that any arbitrary 

case implies the next case. Since in principle the induction rule can be applied repeatedly 

starting from the proved base case, we see that all (usually infinitely many) cases are 
provable. This avoids having to prove each case individually. A variant of mathematical 

induction is proof by infinite descent, which can be used, for example, to prove 
the irrationality of the square root of two. 

A common application of proof by mathematical induction is to prove that a property 
known to hold for one number holds for all natural numbers:[15] Let N = {1,2,3,4,...} be 

https://en.wikipedia.org/wiki/Even_and_odd_numbers
https://en.wikipedia.org/wiki/Mathematical_proof#cite_note-15
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the set of natural numbers, and P(n) be a mathematical statement involving the natural 
number n belonging to N such that 

(i) P(1) is true, i.e., P(n) is true for n = 1. 

(ii)  P(n+1) is true whenever P(n) is true, i.e., P(n) is true implies that P(n+1) is true. 
Then P(n) is true for all natural numbers n. 

For example, we can prove by induction that all positive integers of the form 2n ī 1 are 
odd. Let P(n) represent "2n ī 1 is odd": 

(i) For n = 1, 2n ī 1 = 2(1) ī 1 = 1, and 1 is odd, since it leaves a remainder of 1 when 

divided by 2. ThusP(1) is true. 
(ii)  For any n, if 2n ī 1 is odd (P(n)), then (2n ī 1) + 2 must also be odd, because 

adding 2 to an odd number results in an odd number. 
But (2n ī 1) + 2 = 2n + 1 = 2(n+1) ī 1, so 2(n+1) ī 1 is odd (P(n+1)). 

So P(n)implies P(n+1). 

Thus 2n ī 1 is odd, for all positive integers n. 
The shorter phrase "proof by induction" is often used instead of "proof by mathematical 

induction".[16] 

Proof by contraposition 
Proof by contraposition infers the conclusion "if p then q" from the premise "if not 

q then not p". The statement "ifnot q then not p" is called the contrapositive of the 
statement "if p then q". For example, contraposition can be used to establish that, given 

an integer x, if x² is even, then x is even: 
Suppose x is not even. Then x is odd. The product of two odd numbers is odd, hence x² 

= x·x is odd. Thus x² is not even. Thus, if x² is even, the supposition must be false, 

so x has to be even. 

 

Proof by contradiction: 
In proof by contradiction (also known as reduckintio ad absurdum, Latin for "by 

reduction to the absurd"), it is shown that if some statement were true, a logical 

contradiction occurs, hence the statement must be false. A famous example of proof by 

contradiction shows that  is an irrational number: 

Suppose that  were a rational number, so by definition  where a and b are non-

zero integers withno common factor. (If there is a common factor, divide both numerator 
and denominator by that factor to remove it, and repeat until no common factor remains. 

By the method of infinite descent, this process must terminate.) Thus, . Squaring 
both sides yields 2b2 = a2. Since 2 divides the left hand side, 2 must also divide the right 
hand side (otherwise an even number would equal an odd number). So a2 is even, which 

implies that a must also be even. So we can write a = 2c, where c is also an integer. 

Substitution into the original equation yields 2b2 = (2c)2 = 4c2. Dividing both sides by 2 
yields b2 = 2c2. But then, by the same argument as before, 2 divides b2, so b must be 

even. However, if a and b are both even, they have a common factor, namely 2. This 

https://en.wikipedia.org/wiki/Mathematical_proof#cite_note-16
https://en.wikipedia.org/wiki/Proof_by_contrapositive
https://en.wikipedia.org/wiki/Rule_of_inference
https://en.wikipedia.org/wiki/Contrapositive
https://en.wikipedia.org/wiki/Reductio_ad_absurdum
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Coprime
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contradicts our initial supposition, so we are forced to conclude that  is an irrational 
number. 

Proof by construction 
Proof by construction, or proof by example, is the construction of a concrete example 

with a property to show that something having that property exists. Joseph Liouville, for 
instance, proved the existence of transcendental numbers by constructing an explicit 

example. It can also be used to construct a counterexample to disprove a proposition that 

all elements have a certain property. 

Proof by exhaustion 

In proof by exhaustion, the conclusion is established by dividing it into a finite number of 
cases and proving each one separately. The number of cases sometimes can become very 

large. For example, the first proof of the four color theorem was a proof by exhaustion 

with 1,936 cases. This proof was controversial because the majority of the cases were 
checked by a computer program, not by hand. The shortest known proof of the four color 

theorem as of 2011 still has over 600 cases. 

Probabilistic proof 

A probabilistic proof is one in which an example is shown to exist, with certainty, by 

using methods of probability theory. Probabilistic proof, like proof by construction, is 
one of many ways to show existence theorems. 

This is not to be confused with an argument that a theorem is 'probably' true, a 
'plausibility argument'. The work on the Collatz conjecture shows how far plausibility is 

from genuine proof.  

Combinatorial proof  
A combinatorial proof establishes the equivalence of different expressions by showing 

that they count the same object in different ways. Often a bijection between two sets is 
used to show that the expressions for their two sizes are equal. Alternatively, a double 

counting argument provides two different expressions for the size of a single set, again 

showing that the two expressions are equal. 

Nonconstructive proof 

A nonconstructive proof establishes that a mathematical object with a certain property 
exists without explaining how such an object can be found. Often, this takes the form of a 

proof by contradiction in which the nonexistence of the object is proved to be impossible. 

In contrast, a constructive proof establishes that a particular object exists by providing a 
method of finding it.  

Some examples of nonconstructive proofs: 

An example is the following proof of the theorem "There exist irrational numbers and 

such that is rational." 
Recall that is irrational, and 2 is rational. Consider the number. Either it is rational or it is 

irrational. 
If it is rational, then the theorem is true, with and both being. 

If it is irrational, then the theorem is true, with being and being , since A constructive 
proof of this theorem would leave us knowing values for and Since we don't know this 

(because we don't know wheter is irrational), this proof is nonconstructive.  
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(The statement "Either is rational or it is irrational", from the above proof, is an instance 

of the law of excluded middle, which is not valid within a constructive proof.) 

Another example of a nonconstructive theorem is John Nash's proof that the game 

of Hex is a first-player win. 

Statistical proofs in pure mathematics 

The expression "statistical proof" may be used technically or colloquially in areas of pure 

mathematics, such as involving cryptography, chaotic series, and probabilistic or 

analytic number theory. It is less commonly used to refer to a mathematical proof in the 

branch of mathematics known as mathematical statistics.  

Computer-assisted proofs 

Until the twentieth century it was assumed that any proof could, in principle, be checked 

by a competent mathematician to confirm its validity. However, computers are now used 

both to prove theorems and to carry out calculations that are too long for any human or 

team of humans to check; the first proof of the four color theorem is an example of a 

computer-assisted proof. Some mathematicians are concerned that the possibility of an 
error in a computer program or a run-time error in its calculations calls the validity of 

such computer-assisted proofs into question. In practice, the chances of an error 
invalidating a computer-assisted proof can be reduced by incorporating redundancy and 

self-checks into calculations, and by developing multiple independent approaches and 

programs. Errors can never be completely ruled out in case of verification of a proof by 
humans either, especially if the proof contains natural language and requires deep 

mathematical insight. 
There are also more proof techniques:  

Undecidable statements: A statement that is neither provable nor disprovable from a set 

of axioms is called undecidable (from those axioms). One example is the parallel 

postulate, which is neither provable nor refutable from the remaining axioms 

of Euclidean geometry. 

Heuristic mathematics and experimental mathematics: While early mathematicians such 

as Eudoxus of Cnidus did not use proofs, from Euclid to the foundational 

mathematics developments of the late 19th and 20th centuries, proofs were an essential 

part of mathematics.With the increase in computing power in the 1960s, significant work 

began to be done investigating mathematical objects outside of the proof-theorem 

framework, in experimental mathematics. Early pioneers of these methods intended the 

work ultimately to be embedded in a classical proof-theorem framework, e.g. the early 

development of fractal geometry, which was ultimately so embedded. 

Visual proof: It uses graphs or any other visual demonstrations without any words also 

called ñProof without Wordsò 

Elementary proof: An elementary proof is a proof which only uses basic techniques. 

More specifically, the term is used in number theory to refer to proofs that make no use 

of complex analysis. For some time it was thought that certain theorems, like the prime 

number theorem, could only be proved using "higher" mathematics. However, over time, 

many of these results have been reproved using only elementary techniques. 
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3.1 Properties of Integers, Elementary Number Theory 

 

Properties of Integers 

 
The following are some of the properties of integers. Scroll down the page for more 

examples and explanations of the different properties of integers. 

 

Elementary Number Theory 

 
Elementary number theory is the branch of number theory in which elementary methods 

(i.e., arithmetic, geometry, and algebra) are used to solve equations with integer or 

rational solutions. Below is the list of some Elementary Number Theory:  
i. Composite number 

ii.  Divisibility rule 
iii.  Divisor 

iv. Euler's four-square identity 

v. Half-integer 
vi. Integer 

vii.  Table of prime factors 
viii.  Reduced residue system 
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i. Composite number:  
 

A composite number is a positive integer that can be formed by multiplying together two 

smaller positive integers. Equivalently, it is a positive integer that has at least one divisor 
other than 1 and itself.[1][2] Every positive integer is composite, prime, or the unit 1, so 

the composite numbers are exactly the numbers that are not prime and not a unit.[3][4] 
For example, the integer 14 is a composite number because it is the product of the two 

smaller integers 2 × 7. Likewise, the integers 2 and 3 are not composite numbers because 

each of them can only be divided by one and itself. 
 

ii.  Divisibility rule: 
 

A divisibility rule is a shorthand way of determining whether a given number is 

divisible by a fixed divisor without performing the division, usually by examining its 
digits. Although there are divisibility tests for numbers in any radix, or base, and they 

are all different, this article presents rules and examples only for decimal, or base 10, 
numbers. 

Example: Divisibility by ó2ó 

1. 376 (The original number) 

2. 37 6 (Take the last digit) 

3. 6 ÷ 2 = 3 (Check to see if the last digit is divisible by 2) 

4. 376 ÷ 2 = 188 (If the last digit is divisible by 2, then the whole number is divisible by 2) 

 

iii.  Divisor:  
 

In mathematics a divisor of an integer n, also called a factor of n, is an integer that can be 

multiplied by some other integer to produce n. An integer n is divisible by another 
integer m, if m is a factor of n, so that dividing n by m leaves no remainder. 

¶ Example: The set of all positive divisors of 60, 
A={1,2,3,4,5,6,10,12,15,20,30}  partially ordered by divisibility, has the Hasse 

diagram: 
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iv. Euler's four-square identity   
 

In mathematics, Euler's four-square identity says that the product of two numbers, each of 

which is a sum of four squares, is itself a sum of four squares.  

Example: The amazing polynomial identity. For any pair of quadruples from a commutative ring, the 

following expressions are equal: 
 

 

Leonhard Euler wrote about this identity in a letter dated May 4, 1748 to Christian 

Goldbach (but he used a different sign convention from the above). It can be proven 

with elementary algebra. 

 

v. Half-integer 

 

In mathematics, a half-integer is a number of the form 
 n+1/2 

where n is an integer. For example, 

4İ, 7/2, ī13/2, 8.5 
are all half-integers. 

 
Half-integers occur frequently enough in mathematical contexts that a special term for 

them is convenient. Note that a half of an integer is not always a half-integer: half of an 

even integer is an integer but not a half-integer. The half-integers are precisely those 
numbers that are half of an odd integer, and for this reason are also called the half-odd-

integers. Half-integers are a special case of the dyadic rationals, numbers that can be 
formed by dividing an integer by a power of two 

 

vi. Integer: 
 

An integer is a number that can be written without a fractional component. For example, 
21, 4, 0, and ī2048 are integers, while 9.75, 5 1ù2, and ã2 are not. Denoted by German 

letter óZô: óZahlenô in German means count or Numberôs plural form.  

 
vii.  Table of prime factors: 

 
The tables contain the prime factorization of the natural numbers from 1 to 1000. 

When n is a prime number, the prime factorization is just n itself, written in bold below. 

The number 1 is called a unit. It has no prime factors and is neither prime nor composite. 
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viii.  Reduced residue system 

Any subset R of the integers is called a reduced residue system modulo n if:  

1. gcd(r , n) = 1 for each r contained in R; 

2. R contains ű(n) elements; 

3. no two elements of R are congruent modulo n 

For example, a complete residue system modulo 12 is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. 

1, 5, 7 and 11 are the only integers in this set which are relatively prime to 12, and so the 
corresponding reduced residue system modulo 12 is {1,5,7,11}. The cardinality of this set 

can be calculated with the totient function:  ű(12)=4. 

 
 

3.2 Basic set theory, Relations, Functions: 

Basic Set Theory 

Sets are well-determined collections that are completely characterized by their elements. Thus, 

two sets are equal if and only if they have exactly the same elements. The basic relation in set 

theory is that of elementhood, or membership. We write aɴ Aa Aɴ to indicate that the object aa is 
an element, or a member, of the set AA. We also say that aa belongs to AA. Thus, a set AA is 

equal to a set BB if and only if for every aa, aɴ Aaɴ A if and only if aɴ Baɴ B. In particular, there 

is only one set with no elements at all. This set is called, naturally, the empty set, and is 

represented by the symbol ᶮ .ɲ 

We say that AA is a subset of BB, written AṖBAṖB, if every element of AA is an element 

of BB. Thus, A=BA=B if and only if AṖBAṖB and BṖABṖA. Notice that ᶮṖAᶮṖA, for every 

set AA. 

Given sets AA and BB, one can perform some basic operations with them yielding the following 

sets: 

¶ The set A B᷾A B᷾, called the union of AA and BB, whose elements are the elements 

of AA and the elements of BB. 

¶ The set AžBAžB, called the intersection of AA and BB, whose elements are the 

elements common to AA and BB. 

¶ The set AīBAīB, called the difference of AA and BB, whose elements are those 

elements of AAthat are not members of BB. 

It is routine to check that those operations satisfy the following properties: 

 

¶ Associativity: 

o A (᷾B C᷾)=(A B᷾) C᷾A (᷾B C᷾)=(A B᷾) C᷾ 

o Až(BžC)=(AžB)žCAž(BžC)=(AžB)žC 

¶ Commutativity: 

o A B᷾=B A᷾A B᷾=B A᷾ 

o AžB=BžAAžB=BžA 
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¶ Distributivity: 

o A (᷾BžC)=(AB᷾)ž(AC᷾)A (᷾BžC)=(AB᷾)ž(AC᷾) 

o Až(B᷾C)=(AžB)(᷾AžC)Až(BC᷾)=(AžB)(᷾AžC) 

¶ Idempotency: 

o A A᷾=AA A᷾=A 

o AžA=AAžA=A 

¶  

o A᷾ =ɲAA᷾ =ɲA 

o Ažɲ= Aɲžɲ=  ɲ

o AīA=ɲAīA=ɲ 

¶ If  AṖBAṖB, then 

o A B᷾=A (᷾BīA)=BAB᷾=A (᷾BīA)=B 

o AžB=AAžB=A 

o  

Given an object aa we can form the set that has aa as its only element. This set is denoted 

by {a}{a} . More generally, given a,b,c,éa,b,c,é, we can form the set having a,b,c,éa,b,c,é as 

its elements, which we denote by {a,b,c,é}{a,b,c,é}. Of course, we can actually write down all 

the elements of the set when there are not too many of them. In the case of infinite sets this is 

clearly not possible. 

 

If  a=ba=b, then {a,b}={a}{a,b}={a} . Also, for any aa and bb, the pair {a,b}{a,b}  is the same as 

the pair {b,a}{b,a} . So, if we wish to take into account the order in which the two elements of a 
pair are given, we need to find another way of representing the pair. Thus, we define the ordered 
pair (a,b)(a,b) as the set {{a},{a,b}}{{a},{a,b}} . One can easily check that two ordered 

pairs (a,b)(a,b) and (c,d)(c,d) are equal if and only if a=ca=c and b=db=d. The order is now 

important, for if aÍbaÍb, then (a,b)Í(b,a)(a,b)Í(b,a). 

The Cartesian product A×BA×B of two sets, AA and BB, is defined as the set of all ordered 

pairs (a,b)(a,b)such that aɴ Aa Aɴ and b Bɴb Bɴ. 

 

Having defined ordered pairs, one can now define ordered 
triples (a,b,c)(a,b,c) as (a,(b,c))(a,(b,c)), or in general ordered nn-

tuples (a1,é,an)(a1,é,an) as (a1,(a2,é,an))(a1,(a2,é,an)). 

 

The Cartesian product A1ĬéĬAnA1ĬéĬAn, of the sets A1,é,AnA1,é,An is the set of all nn-

tuples (a1,é,an)(a1,é,an)such that aiɴ Aiai Aɴi , for every 1ÒiÒn1ÒiÒn. In particular, for nÓ2nÓ2, 

the nn-times Cartesian product of a set AA, denoted by AnAn, is the set of all nn-tuples of 

elements of AA. 

3.3 Relations 

 
A binary relation on a set AA is a set of ordered pairs of elements of AA, that is, a subset 

of A×AA×A . In general, an nn-ary relation on AA is a subset of AnAn. 
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A binary relation RR on a set AA is called reflexive if  (a,a)ɴ R(a,a)ɴ R for every aɴ Aa Aɴ. It is 

calledsymmetric if  (b,a)ɴ R(b,a)ɴ R whenever (a,b)ɴ R(a,b)ɴ R. And it is 

called transitive if  (a,c)ɴ R(a,c)ɴ R whenever (a,b)ɴ R(a,b)ɴ R and (b,c)ɴ R(b,c)ɴ R. A relation that 

is reflexive, symmetric, and transitive is called anequivalence relation. The identity relation on 

any set AA is the paradigmatic example of an equivalence relation. Another example is the 

relation on the set of all finite sets of natural numbers consisting of all the pairs (a,b)(a,b) such 

that aa and bb have the same number of elements. 

If  RR is an equivalence relation on a set AA, and (a,b)ɴ R(a,b)ɴ R, then we say that 

that aa and bb are RR-equivalent. For every aɴ Aa Aɴ, the equivalence class of aa, usually 

denoted by [a]R[a]R, is the set of all elements of AA that are RR-equivalent to aa. The set of 

all RR-equivalence classes is called the quotient set and is denoted by A/RA/R. One can easily 

check that A/RA/R is a partition of AA, that is, no element ofA/RA/R is empty, any two elements 

of A/RA/R are disjoint, and every aɴ Aaɴ A belongs to (exactly) one element of A/RA/R, namely 

the class [a]R[a]R. 

If  RR is a binary relation, then one usually writes aRbaRb instead of (a,b)ɴ R(a,b)ɴ R. 

 

A binary relation RR on a set AA is 

called antisymmetric if  a=ba=b whenever aRbaRb and bRabRa. A relation RR on a set AA that is 

reflexive, antisymmetric, and transitive, is called a (reflexive) partial order. If we remove 

from RR all pairs (a,a)(a,a), for every aɴ Aa Aɴ, then we get a strict partial order. The ṖṖrelation 

on any set of sets is an example of a partial order. A partial order on a given set AA is usually 

represented by the symbol ÒÒ, and the corresponding strict partial ordering by <<. A partial 

order ÒÒon a set AA with the additional property that either aÒbaÒb or bÒabÒa, for all 

elements aa and bb of AA, is called a total order, or a linear order. The usual orderings of the 

set NN of natural numbers, the set ZZof the integers, the set QQ of the rational numbers, or the 

set RR of real numbers, are linear orders. 
 

Notice that if ÒÒ is a linear order on a set AA, and BṖABṖA, then ÒžB2ÒžB2 is also a linear 

order on BB. IfÒÒ is a linear order on a set AA, then we say that aɴ Aa Aɴ is the ÒÒ-least element 

of AA if there is no b Aɴb Aɴ distinct from aa such that bÒabÒa. The number 00 is the least 

element of NN, but ZZ has no least element. 

A linear order ÒÒ on a set AA is a well-order if every non-empty subset of AA has a ÒÒ-least 

element. Equivalently, if there is no infinite strictly descending sequence 

é<a2<a1<a0é<a2<a1<a0 

of elements of AA. Thus, the usual ordering of NN is a well-order. But the usual order 
on ZZ is not, because it has no least element. 

3.4 Functions 

A (11-ary) function on a set AA is a binary relation FF on AA such that for every aɴ Aa Aɴ there 

is exactly one pair (a,b)ɴ F(a,b)ɴ F. The element bb is called the value of FF on aa, and is denoted 

by F(a)F(a). And the set AA is called the domain of FF. The notation F:AŸBF:AŸB indicates 

that FF is a function with domain AA and values in the set BB. For nÓ2nÓ2, an nn-ary 
function on AA is a function F:AnŸBF:AnŸB, for some BB. 

A function F:AŸBF:AŸB is one-to-one if for all elements aa and bb of AA, if aÍbaÍb, 

then F(a)ÍF(b)F(a)ÍF(b). And is onto if for every b Bɴb Bɴ there is some aɴ Aa Aɴ such 

that F(a)=bF(a)=b. Finally, FF is bijective if it is one-to-one and onto. Thus, a 

bijection F:AŸBF:AŸB establishes a one-to-one correspondence between the elements 
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of AA and those of BB, and AA is bijectable with BB if there is such a bijection. The identity 

function on a set AA, denoted by Id:AŸAId:AŸA, and which consists of all the pairs (a,a)(a,a), 

with aɴ Aa Aɴ, is trivially a bijection. 

Given functions F:AŸBF:AŸB and G:BŸCG:BŸC, the composition of FF and GG, 

written G FʐG Fʐ, is the function G Fʐ:AŸCGFʐ:AŸC whose elements are all 

pairs (a,G(F(a)))(a,G(F(a))), where aɴ Aa Aɴ. If FF and GG are bijections, then so is G FʐG Fʐ. 

 

 

4.1 Calculus: Real Numbers, Sequences, Limits, Series, Real 

Functions 

4.2 Field 

 
You are probably already familiar with many different sets of numbers from your past 

experience. Some of the commonly used sets of numbers are 
¶ Natural numbers, usually denoted with an N, are the numbers 0,1,2,3,... 

¶ Integers, usually denoted with a Z, are the positive and negative natural numbers: 

...-3,-2,-1,0,1,2,3... 
¶ Rational numbers, denoted with a Q, are fractions of integers (excluding division 

by zero): -1/3, 5/1, 0, 2/7. etc. 
¶ Real numbers, denoted with a R, are constructed and discussed below. 

Note that different sets of numbers have different properties. In the set integers for 
example, any number always has an additive inverse: for any integer x, there is 

another integer t such that  This should not be terribly surprising: from basic 

arithmetic we know that . Try to prove to yourself that not all natural numbers 
have an additive inverse. 

In mathematics, it is useful to note the important properties of each of these sets of 
numbers. The rational numbers, which will be of primary concern in constructing the 

real numbers, have the following properties: 

There exists a number 0 such that for any other number a, 0+a=a+0=a 
For any two numbers a and b, a+b is another number 

For any three numbers a,b, and c, a+(b+c)=(a+b)+c 
For any number a there is another number -a such that a+(-a)=0 

For any two numbers a and b, a+b=b+a 

For any two numbers a and b,a*b is another number 
There is a number 1 such that for any number a, a*1=1*a=a 

For any two numbers a and b, a*b=b*a 
For any three numbers a,b and c, a(bc)=(ab)c 

For any three numbers a,b and c, a(b+c)=ab+ac 
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For every number a there is another number a-1 such that aa-1=1 
As presented above, these may seem quite intimidating. However, these properties are 

nothing more than basic facts from arithmetic. Any collection of numbers (and 

operations + and * on those numbers) which satisfies the above properties is called 
a field. The properties above are usually called field axioms. As an exercise, 

determine if the integers form a field, and if not, which field axiom(s) they violate. 
Even though the list of field axioms is quite extensive, it does not fully explore the 

properties of rational numbers. Rational numbers also have an ordering.' A total 

ordering must satisfy several properties: for any numbers a, b, and c 
if  a Ò b and b Ò a then a = b (antisymmetry) 

if  a Ò b and b Ò c then a Ò c (transitivity) 
a Ò b or b Ò a (totality) 

To familiarize yourself with these properties, try to show that (a) natural numbers, 

integers and rational numbers are all totally ordered and more generally (b) convince 
yourself that any collection of rational numbers are totally ordered (note that the 

integers and natural numbers are both collections of rational numbers). 
Finally, it is useful to recognize one more characterization of the rational numbers: 

every rational number has a decimal expansion which is either repeating or 

terminating. The proof of this fact is omitted, however it follows from the definition 
of each rational number as a fraction. When performing long division, the remainder 

at any stage can only take on positive integer values smaller than the denominator, of 
which there are finitely many. 

 

 
 

4.3 Constructing The Real Number 

 

There are two additional tools which are needed for the construction of the real 
numbers: the upper bound and the least upper bound. Definition  A collection of 

numbers E is bounded above if there exists a numberm such that for all x in E xÒm. 
Any number m which satisfies this condition is called an upper bound of the set E. 

Definition  If a collection of numbers E is bounded above with m as an upper bound 

of E, and all other upper bounds of E are bigger than m, we call m the least upper 
bound or supremum of E, denoted by sup E. 

Many collections of rational numbers do not have a least upper bound which is also 
rational, although some do. Suppose the numbers 5 and 10/3 are, together, taken to 

be E. The number 5 is not only an upper bound of E, it is a least upper bound. In 

general, there are many upper bounds (12, for instance, is an upper bound of the 
collection above), but there can be at most one least upper bound. 

Consider the collection of numbers {3, 3.1, 3.14, 3.141, 3.1415..}: You may 
recognize these decimals as the first few digits of pi. Since each decimal terminates, 

each number in this collection is a rational number. This collection has infinitely 
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many upper bounds. The number 4, for instance, is an upper bound. There is no least 
upper bound, at least not in the rational numbers. Try to convince yourself of this fact 

by attempting to construct such a least upper bound: (a) why does pi not work as a 

least upper bound (hint: pi does not have a repeating or terminating decimal 
expansion), (b) what happens if the proposed supremum is equal to pi up to some 

decimal place, and zeros after (c) if the proposed supremum is bigger than pi, can you 
find a smaller upper bound which will work? 

In fact, there are infinitely many collections of rational numbers which do not have a 

rational least upper bound. We define a real number to be any number that is the least 
upper bound of some collection of rational numbers. 

Properties of Real Number 
The reals are totally ordered. 

For all reals; a, b, c 

Either b>a, b=a, or b<a. 
If  a<b and b<c then a<c 

Also 
b>a implies b+c>a+c 

b>a and c>0 implies bc>ac 

b>a implies -a>-b 

Upper bound axiom 
Every non-empty set of real numbers which is bounded above has a supremum. 
The upper bound axiom is necessary for calculus. It is not true for rational numbers. 

We can also define lower bounds in the same way. 

Definition  A set E is bounded below if there exists a real M such that for 

all x Eɴ xÓM Any M which satisfies this condition is called an lower bound of the set E 
Definition  If a set, E, is bounded below, M is an lower bound of E, and all other lower 

bounds of E are less than M, we call M the greatest lower bound or inifimum of E, 
denoted by inf E 

The supremum and infimum of finite sets are the same as their maximum and minimum. 

Theorem 
Every non-empty set of real numbers which is bounded below has an infimum. 

Proof: 
Let E be a non-empty set of real numbers, bounded below 

Let L be the set of all lower bounds of E 

L is not empty, by definition of bounded below 
Every element of E is an upper bound to the set L, by definition 

Therefore, L is a non empty set which is bounded above 
L has a supremum, by the upper bound axiom 

1/ Every lower bound of E is Òsup L, by definition of supremum 

Suppose there were an eɴ E such that e<sup L 
Every element of L is Òe, by definition 
Therefore e is an upper bound of L and e<sup L 

This contradicts the definition of supremum, so there can be no such e. 

If e Eɴ then eÓsup L, proved by contradiction 
2/ Therefore, sup L is a lower bound of E 
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inf E exists, and is equal to sup L, on comparing definition of infinum to lines 1 & 2 

Bounds and inequalities, theorems:     

 

Theorem: (The triangle inequality) 

 
Proof by considering cases 
If aÒbÒc then |a-c|+|c-b| = (c-a)+(c-b) = 2(c-b)+(b-a)>b-a = |b-a| 

Exercise: Prove the other five cases. 
This theorem is a special case of the triangle inequality theorem from geometry: The sum 

of two sides of a triangle is greater than or equal to the third side. It is useful whenever 

we need to manipulate inequalities and absolute values. 
 

4.4 Series 

 

A series is the sum of a sequence of terms. An infinite series is the sum of an infinite 
number of terms (the actual sum of the series need not be infinite, as we will see below). 

 
An arithmetic series is the sum of a sequence of terms with a common difference (the 

difference between consecutive terms). For example: 

 
1+4+7+10+13+é. 

is an arithmetic series with common difference 3, since  
a2-a1 = 3, a2-a1 = 3, a3-a2 = 3, a3-a2 = 3, and so forth. 

 

A geometric series is the sum of terms with a common ratio. For example, an interesting 
series which appears in many practical problems in science, engineering, and 

mathematics is the geometric series, 
 r+r2+r3+r4+é. where the é.  indicates that the series continues indefinitely. A common 

way to study a particular series (following Cauchy) is to define a sequence consisting of 

the sum of the first n terms. For example, to study the geometric series we can consider 
the sequence which adds together the first n terms: 

Sn (r) = В ὶ  

Generally by studying the sequence of partial sums we can understand the behavior of the 

entire infinite series. 
Two of the most important questions about a series are: 

Does it converge? 
If so, what does it converge to? 

For example, it is fairly easy to see that for  r > 1 the geometric series Sn(r) will not 

converge to a finite number (i.e., it will diverge to infinity). To see this, note that each 
time we increase the number of terms in the series, Sn(r)  increases by rn+1, since rn+1>1  
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for all  r>1 (as we defined), Sn(r) must increase by a number greater than one every term. 
When increasing the sum by more than one for every term, it will diverge. 

 

 
 

 

4.5 Sequences 

 
A sequence is an ordered list of objects (or events). Like a set, it contains members (also 

called elements or terms), and the number of terms (possibly infinite) is called 
the length of the sequence. Unlike a set, order matters, and exactly the same elements can 

appear multiple times at different positions in the sequence. 

For example, (C, R, Y) is a sequence of letters that differs from (Y, C, R), as the ordering 
matters. Sequences can be finite, as in this example, or infinite, such as the sequence of 

all even positive integers (2, 4, 6,...). 

Example of Notation 

There are various and quite different notions of sequences in mathematics, some of which 

(e.g., exact sequence) are not covered by the notations introduced below. 
A sequence may be denoted (a1, a2, ...). For shortness, the notation (an) is also used. 

A more formal definition of a finite sequence with terms in a set S is a function from {1, 
2, ..., n} to S for some n Ó 0. An infinite sequence in S is a function from {1, 2, ...} (the 

set of natural numbers without 0) to S. 

Sequences may also start from 0, so the first term in the sequence is then a0. 
A finite sequence is also called an n-tuple. Finite sequences include the empty sequence ( 

) that has no elements. 
A function from all integers into a set is sometimes called a bi-infinite sequence, since it 

may be thought of as a sequence indexed by negative integers grafted onto a sequence 

indexed by positive integers. 

Types and Properties of Sequences 

A subsequence of a given sequence is a sequence formed from the given sequence by 
deleting some of the elements (which, as stated in the introduction, can also be called 

"terms") without disturbing the relative positions of the remaining elements. 

If the terms of the sequence are a subset of an ordered set, then a monotonically 
increasing sequence is one for which each term is greater than or equal to the term before 

it; if each term is strictly greater than the one preceding it, the sequence is called strictly 
monotonically increasing. A monotonically decreasing sequence is defined similarly. 

Any sequence fulfilling the monotonicity property is called monotonic or monotone. This 

is a special case of the more general notion of a monotonic function. A sequence that 
both increases and decreases (at different places in the sequence) is said to be non-

monotonic or non-monotone. 
The terms non-decreasing and non-increasing are often used in order to avoid any 

possible confusion with strictly increasing and strictly decreasing, respectively. If the 
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terms of a sequence are integers, then the sequence is an integer sequence. If the terms of 
a sequence are polynomials, then the sequence is a polynomial sequence. 

If  S is endowed with a topology (as is true of real numbers, for example), then it becomes 

possible to consider the convergence of an infinite sequence in S. Such considerations 
involve the concept of the limit of a sequence. 

It can be shown that bounded monotonic sequences must converge. 

Sequences in Analysis 

In analysis, when talking about sequences, one will generally consider sequences of the 

form 
 {x1, x2, xé} or {x0, x1, x2é} 

which is to say, infinite sequences of elements indexed by natural numbers. (It may be 
convenient to have the sequence start with an index different from 1 or 0. For example, 

the sequence defined by xn = 1/log(n) would be defined only for n Ó 2. When talking 

about such infinite sequences, it is usually sufficient (and does not change much for most 
considerations) to assume that the members of the sequence are defined at least for all 

indices large enough, that is, greater than some given N.) 
The most elementary type of sequences are numerical ones, that is, sequences of real or 

complex numbers. 

4.6 Limits 

 
A limit  is the value that a function or sequence "approaches" as the input or index 

approaches some value Limits are essential to calculus (and mathematical analysis in 

general) and are used to define continuity, derivatives, and integrals. 
The concept of a limit of a sequence is further generalized to the concept of a limit of 

a topological net, and is closely related to limit and direct limit in category theory. 
In formulas, a limit is usually written as 

lim f(n) = L 

nĄc 
and is read as "the limit of f of n as n approaches c equals L". Here "lim" indicates limit, 

and the fact that functionf(n) approaches the limit L as n approaches c is represented by 
the right arrow (Ÿ), as in 

f(n) = L 

 

4.7 Real functions Continuity  

 

We are now ready to define the concept of a function being continuous. The idea is that 

we want to say that a function is continuous if you can draw its graph without taking your 
pencil off the page. But sometimes this will be true for some parts of a graph but not for 
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others. Therefore, we want to start by defining what it means for a function to be 
continuous at one point. The definition is simple, now that we have the concept of limits: 

Definition: (continuity at a point) 

If  f(x) is defined on an open interval containing c , then f(x) is said to be continuous at c 

if and only if 

Lim f(x) = f(c)  

x Ą c 

 

Note that for f to be continuous at c, the definition in effect requires three conditions: 
1.  that f is defined at c , so f(c) exists, 

2. the limit as x approaches c exists, and 
3. the limit and f(c) are equal 

If any of these do not hold then f is not continuous at c 

 
The idea of the definition is that the point of the graph corresponding to c will be close to 

the points of the graph corresponding to nearby x-values. Now we can define what it 
means for a function to be continuous in general, not just at one point. 

 Definition: (continuity)  

A function is said to be continuous on (a,b) if it is continuous at every point of the 
interval (a,b) . 

We often use the phrase "the function is continuous" to mean that the function is 
continuous at every real number. This would be the same as saying the function was 

continuous on (-Ð, Ð), but it is a bit more convenient to simply say "continuous". 

 
Note that, by what we already know, the limit of a rational, exponential, trigonometric or 

logarithmic function at a point is just its value at that point, so long as it's defined there. 
So, all such functions are continuous wherever they're defined. (Of course, they can't be 

continuous where they're not defined!) 

 

4.8 Derivatives 

 

The derivative of a function of a real variable measures the sensitivity to change of a 

quantity (a function value or dependent variable) which is determined by another quantity 
(the independent variable). Derivatives are a fundamental tool of calculus. For example, 

the derivative of the position of a moving object with respect to time is the object's 
velocity: this measures how quickly the position of the object changes when time is 

advanced. 

Relative to a hyperreal extension R Ṓ R* of the real numbers, the derivative of a real 
function y = f(x) at a real point x can be defined as the shadow of the quotient æy/æx for 
infinitesimal æx, where æy = f(x+ æx) - f(x). Here the natural extension of f to the 

hyperreals is still denoted f. Here the derivative is said to exist if the shadow is 

independent of the infinitesimal chosen. 



 

 29 

It is all about slope! 

Slope = Change in YChange in X   

 

  

We can find an average slope between two points. 

  
  

 

But how do we find the slope at a point? 

There is nothing to measure! 
  

 

But with derivatives we use a small difference ... 

... then have it shrink towards zero. 
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Let us Find a Derivative! 

We will use the slope formula: 

Slope = Change in Y/Change in X = ȹy/ȹx 

to find the derivative of a function y = f(x) 

x changes from x to x+ȹx 

y changes from f(x) to f(x+ȹx) 

Follow these steps: 

 

  Å Fill in this slope formula: ȹyȹx = f(x+ȹx) ī f(x)ȹx 

  Å Simplify it as best we can, 

  Å Then make ȹx shrink towards zero. 

Here we go: 

Example: the function f(x) = x2 

We know f(x) = x2, and can calculate f(x+ȹx) : 

 

Start with:   f(x+ȹx) = (x+ȹx)2 
Expand   (x + ȹx)2: f(x+ȹx) = x2 + 2x ȹx + (ȹx)2 

The slope formula is: {f(x+ȹx) ī f(x)}/ȹx 
Put in f(x+ȹx) and f(x):  

{x2 + 2x ȹx + (ȹx)2 ī x2}/ȹx 

Simplify (x2 and īx2 cancel):  
 = {2x ȹx + (ȹx)2}/ȹx 

Simplify more (divide through by ȹx):   = 2x + ȹx   
And then as ȹx heads towards 0 we get: = 2x 

Result: the derivative of x2 is 2x 

We write dx instead of "ȹx heads towards 0", so "the derivative of" is commonly 

written  
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 x2 = 2x 

"The derivative of x2 equals 2x" 

or simply "d dx of x2 equals 2x" 

 

What does x2 = 2x mean? 

It means that, for the function x2, the slope or "rate of change" at any point is 2x. 

So when x=2 the slope is 2x = 4, as shown here: 

Or when x=5 the slope is 2x = 10, and so on. 

Note: sometimes fô(x) is also used for "the derivative of": 

fô(x) = 2x 

"The derivative of f(x) equals 2x" 

  

4.8 Integrals 

Integration can be used to find areas, volumes, central points 

and many useful things. But it is often used to find the area 

under the graph of a function like this: 
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The area can be found by adding slices that approach zero 

in width : 

And there are Rules of Integration that help us get the 

answer. 

  

 

 

Notation 

The symbol for "Integral" is a stylish 
"S" 

(for "Sum", the idea of summing 

slices): 

  

 

After the Integral Symbol we put the function we want to find the integral of (called the 
Integrand), 

and then finish with dx to mean the slices go in the x direction (and approach zero in 
width). 

 

Definite Integral  
A Definite Integral  has start and end values: in other words there is an interval  (a to b). 

The values are put at the bottom and top of the "S", like this: 

 

  

 

Indefinite  Integral  
(no specific values) 

  
Definite Integral  
(from a to b) 

We can find the Definite Integral by calculating the Indefinite Integral at points a and b, 
then subtracting: 
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Example: 
 

The Definite Integral , from 1 to 2, of 2x dx: 

 
  

The Indefinite Integral  is: Ú2x dx = x2 + C 
¶ At x=1: Ú2x dx = 12 + C 

¶ At x=2: Ú2x dx = 22 + C 
Subtract: 

(22 + C) ī (12 + C) 

22 + C ī 12 ī C 
4 ī 1 + C ī C = 3 

And "C" gets cancelled out ... so with Definite Integrals we can ignore C. 
In fact we can give the answer directly like this: 

 
  

 
We can check that, by calculating the area of the shape: 
Yes, it has an area of 3. 

 

Let's try another example: 
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The Definite Integral, from 0.5 to 1.0, of cos(x) dx: 

 
(Note: x must be in radians) 

  
The Indefinite Integral is: Úcos(x) dx = sin(x) + C 

We can ignore C when we do the subtraction (as we saw above): 

 

  = sin(1) ī sin(0.5) 

    = 0.841... ī 0.479... 

    = 0.362... 

 

5.1 LINEAR ALGEBRA 

 

vector spaces 

 
A vector space (also called a linear space) is a collection of objects called vectors, which may be 

added together and multiplied ("scaled") by numbers, called scalars in this context. Scalars are 

often taken to be real numbers, but there are also vector spaces with scalar multiplication by 

complex numbers, rational numbers, or generally any field. The operations of vector addition and 

scalar multiplication must satisfy certain requirements, called axioms, listed below. 

Euclidean vectors are an example of a vector space. 

 

A scalar has only magnitude (size): 

3.044, ī7 and 2İ are scalars 

Distance, speed, time, temperature, mass, length, area, volume, density, charge, 

pressure, energy, work and power are all scalars. 

 

A vector has magnitude and direction: 

 
Displacement, velocity, acceleration, force and momentum are all vectors. 
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And watch out for these special words: 

 
Distance vs Displacement 

¶ Distance is a scalar ("3 km") 

¶ Displacement is a vector ("3 km Southeast") 
You can walk a long distance, but your displacement may be small (or zero if you return to 

the start). 

Speed vs Velocity 

 

¶ Speed is how fast something moves. 

¶ Velocity is speed with a direction. 

Saying Ariel the Dog runs at 9 km/h (kilometers per hour) is a speed. 

But saying he runs 9 km/h Westwards is a velocity. 

 

Notation 

A vector is often written in bold, like a or b so we know it is not a scalar: 

¶ so c is a vector, it has magnitude and direction 

¶ but c is a scalar, like 3 or 12.4 

Example: kb is actually the scalar k times the vector b. 

 
A vector can also be written as the letters of its head and tail with an arrow above it, like this: 

Using Scalars 

Scalars are easy to use. Just treat them as normal numbers. 

Example: 3 kg + 4 kg = 7 kg 

Using Vectors 

We can add two vectors by joining them head-to-tail: 
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We can subtract one vector from another: 

¶ first we reverse the direction of the vector we want to subtract, 

¶ then add them as usual: 

 
a ī b 

We can multiply a vector by a scalar (called "scaling" a vector): 

Example: multiply the vector m = (7,3) by the scalar 3 

 

  a = 3m = (3×7,3×3) = (21,9) 

It still points in the same direction, but is 3 times longer 

(And now you know why numbers are called "scalars", because they "scale" the vector up or 

down.) 

 

 

Polar or Cartesian 

A vector can be in: 

¶ magnitude and direction (Polar) form, 

¶ or in x and y (Cartesian) form 

Like this: 

 

<=> 

 

Vector a in Polar  

Coordinates 
  

Vector a in Cartesian 

Coordinates 
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5.2 Multiplying a Vector by a Vector (Dot Product and Cross 

Product) 

 

 

How do we multiply two vectors together? There is more than one 

way! 

¶ The scalar or Dot Product (the result is a scalar). 

¶ The vector or Cross Product (the result is a vector). 

 

 
List of Numbers 

So a vector can be thought of as a list numbers: 

¶ 2 numbers for 2D space, such as (4,7) 

¶ 3 numbers for 3D space, such as (1,4,5) 

5.3 Scalars, Vectors and Matrices 

And when we include matrices we get this interesting pattern: 

¶ A scalar is a number, like 3, -5, 0.368, etc, 

¶ A vector is a list of numbers (can be in a row or column), 

¶ A matrix  is an array of numbers (one or more rows, one or more columns). 

 

In fact a vector is also a matrix! Because a matrix can have just one row or one column. 

So the rules that work for matrices also work for vectors. 
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Matrices 

A matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in 

rows and columns. For example, the dimensions of matrix (1) are 2 × 3 (read "two by three"), 

because there are two rows and three columns. 

A Matrix is an array of numbers: 

  

A Matrix (This one has 2 Rows and 3 Columns) 

We talk about one matrix , or several matrices. 

There are many things we can do with them ... 

 

Adding 

To add two matrices: add the numbers in the matching positions: 

 

These are the calculations: 

3+4=7 8+0=8 

4+1=5 6-9=-3 

The two matrices must be the same size, i.e. the rows must match in size, and the columns must 

match in size. 

Example: a matrix with 3 rows and 5 columns can be added to another matrix of 3 rows and 5 

columns. 

But it could not be added to a matrix with 3 rows and 4 columns (the columns don't match in 

size) 
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Negative 

The negative of a matrix is also simple: 

 

These are the calculations: 

-(2)=-2 -(-4)=+4 

-(7)=-7 -(10)=-10 

Subtracting 

To subtract two matrices: subtract the numbers in the matching positions: 

 

These are the calculations: 

3-4=-1 8-0=8 

4-1=3 6-(-9)=15 

Note: subtracting is actually defined as the addition of a negative matrix: A + (-B) 

Multiply by a Constant 

We can multiply a matrix by some value: 
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These are the calculations: 

2×4=8 2×0=0 

2×1=2 2×-9=-18 

We call the constant a scalar, so officially this is called " "scalar multiplication".  

Multiplying a Matrix by Another Matrix  

But to multiply a matrix by another matrix we need to do the "dot product" of rows and columns 
... what does that mean? Let us see with an example: 

To work out the answer for the 1st row and 1st column: 

 

The "Dot Product" is where we multiply matching members, then sum up: 

(1, 2, 3) Å (7, 9, 11) = 1Ĭ7 + 2Ĭ9 + 3Ĭ11 = 58 

We match the 1st members (1 and 7), multiply them, likewise for the 2nd members (2 and 9) and 

the 3rd members (3 and 11), and finally sum them up. 

Want to see another example? Here it is for the 1st row and 2nd column: 
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(1, 2, 3) Å (8, 10, 12) = 1Ĭ8 + 2Ĭ10 + 3Ĭ12 = 64 

We can do the same thing for the 2nd row and 1st column: 

(4, 5, 6) Å (7, 9, 11) = 4Ĭ7 + 5Ĭ9 + 6Ĭ11 = 139 

And for the 2nd row and 2nd column: 

(4, 5, 6) Å (8, 10, 12) = 4Ĭ8 + 5Ĭ10 + 6Ĭ12 = 154 

And we get: 

 

Dividing 

And what about division? Well we don't actually divide matrices, we do it this way: 

A/B = A × (1/B) = A × B-1 

where B-1 means the "inverse" of B. 

So we don't divide, instead we multiply by an inverse. 

Transposing 

To "transpose" a matrix, swap the rows and columns. We put a "T" in the top right-hand corner to 

mean transpose: 
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Notation 

A matrix is usually shown by a capital letter (such as A, or B) 

Each entry (or "element") is shown by a lower case letter with a "subscript" of row,column: 

 

 

Rows and Columns 

So which is the row and which is the column? 

¶ Rows go left-right  
¶ Columns go up-down 

To remember that rows come before columns use the word "arc" : 

ar,c 

Example: 

B =   

 

Here are some sample entries: 

b1,1 = 6 (the entry at row 1, column 1 is 6) 

b1,3 = 24 (the entry at row 1, column 3 is 24) 

b2,3 = 8 (the entry at row 2, column 3 is 8) 
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Determinant of a Matrix  

The determinant of a matrix is a special number that can be calculated from a square matrix. 

  

A Matrix (This one has 2 Rows and 2 Columns) 

The determinant of that matrix is (calculations are explained later): 

3Ĭ6 ī 8Ĭ4 = 18 ī 32 = ī14 

What is it for? 

The determinant tells us things about the matrix that are useful in systems of linear equations, 

helps us find the inverse of a matrix, is useful in calculus and more. 

Symbol 

The symbol for determinant is two vertical lines either side. 

Example: 

|A| means the determinant of the matrix A 

(Exactly the same symbol as absolute value.) 

Calculating the Determinant 

First of all the matrix must be square (i.e. have the same number of rows as columns). Then it is 

just basic arithmetic. Here is how: 

For a 2×2 Matrix 

For a 2×2 matrix (2 rows and 2 columns): 

 

The determinant is: 

|A| = ad - bc 

"The determinant of A equals a times d minus b times c" 
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It is easy to remember when you think of a cross: 

¶ Blue means positive (+ad), 

¶ Red means negative (-bc) 

  

 

Example: 

 

|B| = 4×8 - 6×3 

  = 32-18 

  = 14 

For a 3×3 Matrix 

For a 3×3 matrix (3 rows and 3 columns): 

 

The determinant is: 

|A| = a(ei - fh) - b(di - fg) + c(dh - eg) 

"The determinant of A equals ... etc" 

It may look complicated, but there is a pattern: 

 

To work out the determinant of a 3×3 matrix: 

¶ Multiply  a by the determinant of the 2×2 matrix that is not in a's row or column. 

¶ Likewise for b, and for c 

¶ Add them up, but remember that b has a negative sign! 
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As a formula (remember the vertical bars || mean "determinant of"): 

 
"The determinant of A equals a times the determinant of ... etc" 

Example: 

 

|C| = 6×(-2×7 - 5×8) - 1×(4×7 - 5×2) + 1×(4×8 - -2×2) 

  = 6×(-54) - 1×(18) + 1×(36) 

  = -306 

5.5 Eigenvalues and Eigenvectors 

The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging 

application. For example, this problem is crucial in solving systems of differential equations, 

analyzing population growth models, and calculating powers of matrices (in order to define the 

exponential matrix). Other areas such as physics, sociology, biology, economics and statistics 

have focused considerable attention on "eigenvalues" and "eigenvectors"-their applications and 

their computations. Before we give the formal definition, let us introduce these concepts on an 

example.  

Example. Consider the matrix  
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Consider the three column matrices  

 

 

 

 

We have  

 

 

 

 

In other words, we have  

 

 

 

 

Next consider the matrix P for which the columns are C1, C2, and C3, i.e.,  

 

 

 

 

We have det(P) = 84. So this matrix is invertible. Easy calculations give  
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Next we evaluate the matrix P-1AP. We leave the details to the reader to check that we have  

 

 

 

 

 

 

In other words, we have  

 

 

 

 

Using the matrix multiplication, we obtain  
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which implies that A is similar to a diagonal matrix. In particular, we have  

 

 

 

 

for . Note that it is almost impossible to find A75 directly from the original form 

of A.  

 

This example is so rich of conclusions that many questions impose themselves in a natural way. 

For example, given a square matrix A, how do we find column matrices which have similar 

behaviors as the above ones? In other words, how do we find these column matrices which will 

help find the invertible matrix P such that P-1AP is a diagonal matrix?  

From now on, we will call column matrices vectors. So the above column matrices C1, C2, 

and C3 are now vectors. We have the following definition.  

Definition.  Let A be a square matrix. A non-zero vector C is called an eigenvector of A if and 

only if there exists a number (real or complex)  such that  

 

 

 

If such a number  exists, it is called an eigenvalue of A. The vector C is called eigenvector 

associated to the eigenvalue .  

 

Remark. The eigenvector C must be non-zero since we have  

 

 

 

for any number .  
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Example. Consider the matrix  

 

 

 

We have seen that  

 

 

 

 

where  

 

 

 

 

So C1 is an eigenvector of A associated to the eigenvalue 0. C2 is an eigenvector of A associated 

to the eigenvalue -4 while C3 is an eigenvector of A associated to the eigenvalue 3.  

 

It may be interesting to know whether we found all the eigenvalues of A in the above example. In 

the next page, we will discuss this question as well as how to find the eigenvalues of a square 

matrix. 
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6.1 Algebra 

6.2 Group 

 

A group is a set combined with an operation 

So for example, the set of integers with addition. 
But it is a bit more complicated than that. We can't say much if we just know there is a set and an 

operator. What more could we describe? We need more information about the set and the 

operator. This is why groups have restrictions placed on them. That is, they have more properties. 

Formal Definition of a Group 

A group is a set G, combined with an operation *, such that: 

1. The group contains an identity  
2. The group contains inverses 

3. The operation is associative 

4. The group is closed under the operation. 

Let's look at those one at a time: 

 

1. The group contains an identity. If we use the operation on any element and 

the identity, we will get that element back. 

For the integers and addition, the identity is "0". Because 5+0 = 5 and 0+5 = 5 

In other words it leaves other elements unchanged when combined with them. 

There is only one identity element for every group 

The symbol for the identity element is e, or sometimes 0. But you need to start seeing 0 as a 

symbol rather than a number. 0 is just the symbol for the identity, just in the same way e is. It's 

defined that way. In fact, many times mathematicians prefer to use 0 rather than e because it is 

much more natural. 

Formal Statement: 

There exists an e in the set G, such that a * e = a and e * a = a, for all elements a in G 

  

 

2. The group contains inverses. If we have an element of the group, there's 

another element of the group such that when we use the operator on both of 

them, we get e, the identity. 

For the integers and addition, the inverse of 5 is -5. (because 5 + -5 = 0) 

In just the same way, for negative integers, the inverses are positives. -5 + 5 = 0, so the inverse of 

-5 is 5. In fact, if a is the inverse of b, then it must be that b is the inverse of a. 

Inverses are unique. You can't name any other number x, such that 5 + x = 0 besides -5. 

Make a note that while there exists only one identity for every single element in the 
group, each element in the group has a different inverse. 

The notation that we use for inverses is a-1. So in the above example, a-1 = b. In the same 

way, if we are talking about integers and addition, 5-1 = -5. 
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Formal Statement: 
For all a in G, there exists b in G, such that a * b = e and b * a = e. 

  

 

3. Associative. You should have learned about associative way back in 

basic algebra. All it means is that the order in which we do operations 

doesn't matter. 
a * (b * c) = (a * b) * c 

Notice that we still went a...b...c. All that changes was the parentheses. We'll get back to 
this later ... 

Formal Statement:  
For all a, b, and c in G, a * (b * c) = (a * b) * c 

 

 

4. Closed under the operation. Imagine you are closed inside a huge 

box. When you are on the inside, you can't get to the outside. In that 
same way, once you have two elements inside the group, no matter what 

the elements are, using the operation on them will not get you outside 
the group 

 

If we have two elements in the group, a and b, it must be the case that a*b is also in the 

group. This is what we mean by closed. It's called closed because from inside the group, 
we can't get outside of it. 

And as with the earlier properties, the same is true with the integers and addition. If x and 

y are integers, x + y = z, it must be that z is an integer as well. 

Formal Statement: 

For all elements a, b in G, a*b is in G 

 

So, if we have a set and an operation, and can satisfy every one of those conditions, we 

can say this is a Group. 
 

6.3 Field 

 

a field is one of the fundamental algebraic structures used in abstract algebra. It is a nonzero 

commutative division ring, or equivalently a ring whose nonzero elements form an abelian group 

under multiplication. As such it is an algebraic structure with notions of addition, subtraction, 

multiplication, and division satisfying the appropriate abelian group equations and distributive 

law. The most commonly used fields are the field of real numbers, the field of complex numbers, 
and the field of rational numbers, but there are also finite fields, algebraic function fields, 

algebraic number fields, p-adic fields, and so forth. 

https://www.mathsisfun.com/associative-commutative-distributive.html
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A simple example of a field is the field of rational numbers, consisting of numbers which can be 

written as fractions a/b, where a and b are integers, and b Í 0. The additive inverse of such a 

fraction is simply īa/b, and the multiplicative inverse (provided that a Í 0) is b/a. To see the 

latter, note that b/a.a/b=ba/ab = 1 

 

Example of Filed with Four Elements:  

 

+ O I  A B 

O O I A B 

I  I O B A 

A A B O I 

B B A I O 

 

In addition to familiar number systems such as the rationals, there are other, less immediate 

examples of fields. The following example is a field consisting of four elements called O, I, A 

and B. The notation is chosen such that O plays the role of the additive identity element (denoted 

0 in the axioms), and I is the multiplicative identity (denoted 1 above). One can check that all 

field axioms are satisfied. For example: 
A · (B + A) = A · I = A, which equals A · B + A · A = I + B = A, as required by the distributivity. 

The above field is called a finite field with four elements, and can be denoted F4. Field theory is 

concerned with understanding the reasons for the existence of this field, defined in a fairly ad-hoc 

manner, and describing its inner structure. For example, from a glance at the multiplication table, 

it can be seen that any non-zero element (i.e., I, A, and B) is a power of A: A = A1, B = A2 = A · 

A, and finally I = A3 = A · A · A. This is not a coincidence, but rather one of the starting points of 

a deeper understanding of (finite) fields. 

 

6.4 Polynomials 

 
A polynomial is an expression consisting of variables and coefficients which only employs the 

operations of addition, subtraction, multiplication, and non-negative integer exponents. An 

example of a polynomial of a single variable x is x2 ī 4x + 7. An example in three variables is x3 

+ 2xyz2 ī yz + 1. 

A polynomial looks like this: 

 

example of a polynomial 

this one has 3 terms 

 

· O I  A B 

O O O O O 

I  O I A B 

A O A B I 

B O B I A 
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Polynomial comes from poly- (meaning "many") and -nomial (in this case meaning 
"term") ... so it says "many terms" 

A polynomial can have: 

constants (like 3, -20, or ½) 

variables (like x and y) 

exponents (like the 2 in y2), but only 0, 1, 2, 3, ... etc are allowed 

that can be combined using addition, subtraction, multiplication and division ... 

... except ... 

... not division by a variable (so something like 2/x is right out) 

So: 

A polynomial can have constants, variables and exponents,  
but never division by a variable. 

 

 

Polynomial or Not? 

 
These are polynomials: 

¶ 3x 
¶ x - 2 

¶ -6y2 - (7/9)x 
¶ 3xyz + 3xy2z - 0.1xz - 200y + 0.5 
¶ 512v5+ 99w5 

¶ 5 
(Yes, even "5" is a polynomial, one term is allowed, and it can even be just a constant!) 

And these are not polynomials 
¶ 3xy-2 is not, because the exponent is "-2" (exponents can only be 0,1,2,...) 

¶ 2/(x+2) is not, because dividing by a variable is not allowed 

¶ 1/x is not either 
¶ ãx is not, because the exponent is "½" (see fractional exponents) 

But these are allowed: 
¶ x/2 is allowed, because you can divide by a constant 

¶ also 3x/8 for the same reason 

¶ ã2 is allowed, because it is a constant (= 1.4142...etc) 
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Monomial, Binomial, Trinom ial 

There are special names for polynomials with 1, 2 or 3 terms: 

 
There is also quadrinomial (4 terms) and quintinomial (5 terms),  

but those names are not often used 

Polynomials can have as many terms as needed, but not an infinite  number of terms. 

 

Variables 

 

Polynomials can have no variable at all 

 

Example: 21 is a polynomial. It has just one term, which is a constant. 

Or one variable 

 

Example: x4-2x2+x has three terms, but only one variable (x) 

Or two or more variables 

 

Example: xy4-5x2z has two terms, and three variables (x, y and z) 

 

What is Special About Polynomials? 

 

Because of the strict definition, polynomials are easy to work with. 

For example we know that: 

¶ If you add polynomials you get a polynomial 

¶ If you multiply polynomials you get a polynomial 

So you can do lots of additions and multiplications, and still have a polynomial as the result. 

Also, polynomials of one variable are easy to graph, as they have smooth and continuous lines. 

 

Example: x4-2x2+x 

 

See how nice and  

smooth the curve is? 

You can also divide polynomials (but the result may not be a polynomial). 
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6.5 Degree 

 

The degree of a polynomial with only one variable is the largest exponent of that variable. 

Example: 

 

The Degree is 3 (the largest exponent of x) 

For more complicated cases, read Degree (of an Expression). 

Standard Form 

The Standard Form for writing a polynomial is to put the terms with the highest degree first. 

Example: Put this in Standard Form: 3x2 - 7 + 4x3 + x6 

The highest degree is 6, so that goes first, then 3, 2 and then the constant last: 

x6 + 4x3 + 3x2 - 7 

You don't have to use Standard Form, but it helps. 

 

 

7.1 PROBABILITY THEORY 

 

7.2 Random Events 

 
In probability theory, an event that under given conditions may or may not occur and that has a ce

rtain probability p (0 Ò p Ò1) of occurrence under the given conditions. A random event A can be 

seen to have a certain probability from the behaviorof its frequency: if  the indicated conditions oc

cur n times, while A occurs precisely m times, then the frequency m/n wil l beclose to p when n is l

arge. 

 

Example Events: 

¶ Getting a Tail when tossing a coin is an event 

¶ Rolling a "5" is an event. 

 

An event can include several outcomes: 

¶ Choosing a "King" from a deck of cards (any of the 4 Kings) is also an event 

¶ Rolling an "even number" (2, 4 or 6) is an event 

 

Events can be: 

¶ Independent (each event is not affected by other events), 

¶ Dependent (also called "Conditional", where an event is affected by other events) 

¶ Mutually Exclusive (events can't happen at the same time) 
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7.3 Independent Events 

 

Events can be "Independent", meaning each event is not affected by any other events. 

This is an important idea! A coin does not "know" that it came up heads before ... each toss of a 

coin is a perfect isolated thing. 

 

Example: You toss a coin three times and it comes up "Heads" each time ... what is the chance 

that the next toss will also be a "Head"? 

The chance is simply 1/2, or 50%, just like ANY OTHER toss of the coin. 

What it did in the past will not affect the current toss! 

Some people think "it is overdue for a Tail", but really truly the next toss of the coin is totally 

independent of any previous tosses. 

Saying "a Tail is due", or "just one more go, my luck is due" is called The Gambler's Fallacy 

Dependent Events 

 

But some events can be "dependent" ... which means they can be affected by previous events. 

Example: Drawing 2 Cards from a Deck 

After taking one card from the deck there are less cards available, so the probabilities change! 

  

Let's look at the chances of getting a King. 

For the 1st card the chance of drawing a King is 4 out of 52 

But for the 2nd card: 

¶ If the 1st card was a King, then the 2nd card is less likely to be a King, as only 3 of the 51 

cards left are Kings. 

¶ If the 1st card was not a King, then the 2nd card is slightly more likely to be a King, as 4 

of the 51 cards left are King. 

This is because we are removing cards from the deck. 

 

Replacement: When we put each card back after drawing it the chances don't change, as the 

events are independent. 

Without Replacement: The chances will change, and the events are dependent. 

 

Tree Diagrams 

 

When we have Dependent Events it helps to make a "Tree Diagram" 

 

Example: Soccer Game 

You are off to soccer, and love being the Goalkeeper, but that depends who is the Coach today: 

¶ with Coach Sam your probability of being Goalkeeper is 0.5 

¶ with Coach Alex your probability of being Goalkeeper is 0.3 

Sam is Coach more often ... about 6 of every 10 games (a probability of 0.6). 

  

Let's build the Tree Diagram 

 

Start with the Coaches. We know 0.6 for Sam, so it must be 0.4 for Alex (the probabilities must 
add to 1): 
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Then fill out the branches for Sam (0.5 Yes and 0.5 No), and then for Alex (0.3 Yes and 0.7 No): 

 
Now it is neatly laid out we can calculate probabilities (read more at "Tree Diagrams"). 

 

Mutually Exclusive 

 

Mutually Exclusive means we can't get both events at the same time. 

It is either one or the other, but not both 

 

Examples: 

¶ Turning left or right are Mutually Exclusive (you can't do both at the same time) 

¶ Heads and Tails are Mutually Exclusive 

¶ Kings and Aces are Mutually Exclusive 

What isn't Mutually Exclusive 

¶ Kings and Hearts are not Mutually Exclusive, because we can have a King of Hearts! 

Like here: 

 

  

 

Aces and Kings are  

Mutually Exclusive 
  

Hearts and Kings are  

not Mutually Exclusive  
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7.3 Probability Spaces 

 

a probability space or a probability triple is a mathematical construct that models a real-

world process (or "experiment") consisting of states that occur randomly. A probability 

space is constructed with a specific kind of situation or experiment in mind. One 
proposes that each time a situation of that kind arises, the set of possible outcomes is the 

same and the probabilities are also the same. 
 

A probability space consists of three parts: 

 
1. A sample space, Ý, which is the set of all possible outcomes. 

2. A set of events F where each event is a set containing zero or more 
outcomes. 

3. The assignment of probabilities to the events; that is, a function P from 

events to probabilities. 
Example:  
 

The fair coin is tossed three times. There are 8 possible outcomes: ɋ = {HHH, HHT, HTH, HTT, 

THH, THT, TTH, TTT} (here ñHTHò for example means that first time the coin landed heads, 

the second time tails, and the last time heads again). The complete information is described by the 

ů-algebra F = 2ɋ of 28 = 256 events, where each of the events is a subset of ɋ. 
Alice knows the outcome of the second toss only. Thus her incomplete information is described by the 

partition  

ɋ = A1 Ṥ A2 = {HHH, HHT, THH, THT} Ṥ {HTH, HTT, TTH, TTT},  

where Ṥ is the disjoint union, and the corresponding ů-algebra  

FAlice = {{}, A 1, A2, ɋ}.  

 

Brian knows only the total number of tails. His partition contains four parts:  

ɋ = B0Ṥ B1 Ṥ B2 Ṥ B3 = {HHH} Ṥ {HHT, HTH, THH} Ṥ {TTH, THT, HTT} Ṥ {TTT};  

accordingly, his ů-algebra FBrian contains 24 = 16 events. 

 

7.5 Random Variables 

 
In probability and statistics, a random variable, random quantity, aleatory variable or stochastic 

variable is a quantity whose value depends in some clearly-defined way on a set of possible 

random events. A random variable can take on a set of possible different values (similarly to 

other mathematical variables), each with an associated probability.  

In short we can say, A Random Variable is a set of possible values from a random experiment. 

 
Example:  

 

Tossing a coin: we could get Heads or Tails. 

Let's give them the values Heads=0 and Tails=1 and we have a Random Variable "X": 
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In short: 

X = {0, 1}  

Note: We could choose Heads=100 and Tails=150 or other values if we want! It is our choice. 

So: 

¶ We have an experiment (such as tossing a coin) 

¶ We give values to each event 

¶ The set of values is a Random Variable 

 

7.6 Moments and Expectations 

 
In mathematics, a moment is a specific quantitative measure, used in both mechanics and 

statistics, of the shape of a set of points. If the points represent mass, then the zeroth moment is 

the total mass, the first moment divided by the total mass is the center of mass, and the second 

moment is the rotational inertia. If the points represent probability density, then the zeroth 

moment is the total probability (i.e. one), the first moment is the mean, the second central 

moment is the variance, the third moment is the skewness, and the fourth moment (with 

normalization and shift) is the kurtosis. The mathematical concept is closely related to the 

concept of moment in physics. 

For a bounded distribution of mass or probability, the collection of all the moments (of all orders, 

from 0 to Ð) uniquely determines the distribution. 

 

The expected value (or mean) of X, where X is a discrete random variable, is a weighted average 

of the possible values that X can take, each value being weighted according to the probability of 

that event occurring. The expected value of X is usually written as E(X) or m. 

¶ E(X) = S x P(X = x) 

So the expected value is the sum of: [(each of the possible outcomes) × (the probability of the 

outcome occurring)]. 

In more concrete terms, the expectation is what you would expect the outcome of an experiment 

to be on average. 

 

Example 

 

What is the expected value when we roll a fair die? 

There are six possible outcomes: 1, 2, 3, 4, 5, 6. Each of these has a probability of 1/6 of 
occurring. Let X represent the outcome of the experiment. 

Therefore P(X = 1) = 1/6 (this means that the probability that the outcome of the experiment is 1 

is 1/6) 

P(X = 2) = 1/6 (the probability that you throw a 2 is 1/6) 

P(X = 3) = 1/6 (the probability that you throw a 3 is 1/6) 
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P(X = 4) = 1/6 (the probability that you throw a 4 is 1/6) 

P(X = 5) = 1/6 (the probability that you throw a 5 is 1/6) 

P(X = 6) = 1/6 (the probability that you throw a 6 is 1/6) 

E(X) = 1×P(X = 1) + 2×P(X = 2) + 3×P(X = 3) + 4×P(X=4) + 5×P(X=5) + 6×P(X=6) 

Therefore E(X) = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 7/2 

So the expectation is 3.5 . If you think about it, 3.5 is halfway between the possible values the die 

can take and so this is what you should have expected. 

 

 

 

 

7.7 Probability Distributions 

 
A random variable is a variable that is subject to variations due to random chance. One can think 

of a random variable as the result of a random experiment, such as rolling a die, flipping a coin, 

picking a number from a given interval.  

The idea is that, each time you perform the experiment, you obtain a sample of the random 

variable.  

Since the variable is random, you expect to get different values as you obtain multiple samples.  

(Some values might be more likely than others, as in an experiment of rolling two six-sided die 

and recording the sum of the resulting two numbers, where obtaining a value of 7 is much more 

likely than obtaining value of 12.)  

 

A probability distribution is a function that describes how likely you will obtain the different 

possible values of the random variable. 

 

It turns out that probability distributions have quite different forms depending on whether the 

random variable takes on discrete values (such as numbers from the set 

{1,2,3,4,5,6}{1,2,3,4,5,6}) or takes on any value from a continuum (such as any real number in 

the interval [0,1][0,1]).  

Despite their different forms, one can do the same manipulations and calculations with either 

discrete or continuous random variables.  

The main difference is usually just whether one uses a sum or an integral. 

 

Cumulative Distribution Function  
 

The cumulative distribution function (CDF) of a real-valued random variable X, or just 

distribution function of X, evaluated at x, is the probability that X will take a value less than or 

equal to x. 

In the case of a continuous distribution, it gives the area under the probability density function 

from minus infinity to x. Cumulative distribution functions are also used to specify the 

distribution of multivariate random variables. 
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Cumulative Distribution Function for the normal distribution 

 

 

 
 

From top to bottom, the cumulative distribution function of a discrete probability distribution, 

continuous probability distribution, and a distribution which has both a continuous part and a 

discrete part. 

 

 

Discrete Probability Distribution   

 

A discrete probability distribution  is a probability distribution characterized by a probability 

mass function. Thus, the distribution of arandom variable X is discrete, and X is called a discrete 

random variable, if 

В 0Ò8 Õ  = 1 

As u runs through the set of all possible values of X. A discrete random variable can assume only 
a finite or countably infinite number of values. For the number of potential values to be countably 

infinite, even though their probabilities sum to 1, the probabilities have to decline to zero fast 

enough. 

https://en.wikipedia.org/wiki/File:Normal_Distribution_CDF.svg
https://en.wikipedia.org/wiki/File:Discrete_probability_distribution_illustration.svg
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The probability mass function of a discrete probability distribution. The probabilities of 

the singletons {1}, {3}, and {7} are respectively 0.2, 0.5, 0.3. A set not containing any of these 

points has probability zero. 

 

For example, if Pr(X=n) = 1/2n for n = 1, 2, ..., we have the sum of probabilities 1/2 + 1/4 + 1/8 + 

... = 1. 

Well-known discrete probability distributions used in statistical modeling include the Poisson 

distribution, the Bernoulli distribution, the binomial distribution, the geometric distribution, and 

the negative binomial distribution. Additionally, the discrete uniform distribution is commonly 

used in computer programs that make equal-probability random selections between a numbers of 

choices. 

 

Continuous Probability Distribution  

 
A continuous probability distribution  is a probability distribution that has a cumulative 

distribution function that is continuous. Most often they are generated by having a probability 

density function. Mathematicians call distributions with probability density functions absolutely 

continuous, since their cumulative distribution functions absolutely continuous with respect to 

the Lebesgue measure ɚ. If the distribution of X is continuous, then X is called a continuous 

random variable. There are many examples of continuous probability distributions: normal, 

uniform, chi-squared, and others. 

 
... of a continuous probability distribution, ... 

 

Intuitively, a continuous random variable is the one which can take a continuous range of 

valuesðas opposed to a discrete distribution, where the set of possible values for the random 

variable is at most countable. While for a discrete distribution an event with probability zero is 

impossible (e.g., rolling 31/2 on a standard dice is impossible, and has probability zero), this is 

not so in the case of a continuous random variable. For example, if one measures the width of an 

oak leaf, the result of 3½ cm is possible; however, it has probability zero because uncountably 

many other potential values exist even between 3 cm and 4 cm. Each of these individual 

outcomes has probability zero, yet the probability that the outcome will fall into the interval (3 

cm, 4 cm) is nonzero. This apparent paradox is resolved by the fact that the probability 
that X attains some value within an infinite set, such as an interval, cannot be found by naively 

adding the probabilities for individual values. Formally, each value has an infinitesimally small 

probability, which statistically is equivalent to zero. 

https://en.wikipedia.org/wiki/File:Discrete_probability_distrib.svg
https://en.wikipedia.org/wiki/File:Normal_probability_distribution.svg
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Formally, if X is a continuous random variable, then it has a probability density function ä(x), and 

therefore its probability of falling into a given interval, say [a, b]  is given by the integral 

 

Pr[aÒXÒb] =  ᷿ὪὼὨὼ 

 

Properties of Probability Distributions:  
¶ The probability distribution of the sum of two independent random variables is 

the convolution of each of their distributions. 
¶ Probability distributions are not a vector spaceðthey are not closed under linear 

combinations, as these do not preserve non-negativity or total integral 1ðbut they 

are closed under convex combination, thus forming a convex subset of the space 
of functions (or measures). 
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9.1 Some Important Links for Studies:  

a. Introduction to Latex: http://www.latex-project.org/about/  

b. Latex Tutorials: https://www.latex-tutorial.com/  

c. Latex Video Tutorials: https://www.youtube.com/playlist?list=PL1D4EAB31D3EBC449  

d. Introduction to Python: https://www.python.org/about/gettingstarted/  

e. Tutorial to Learn Python: http://www.learnpython.org/  

f. Video Tutorials for Learning Python: https://www.youtube.com/watch?v=cpPG0bKHYKc  

g. Introduction to Sage: http://doc.sagemath.org/html/en/tutorial/introduction.html  

h. Tutorials for Learning Sage: https://doc.sagemath.org/html/en/tutorial/  

i. Video Tutorials for Learning Sage: https://www.youtube.com/watch?v=LaJGVZCx0Vw  

j. Introduction to R Language: https://www.r-project.org/   and https://cran.r-

project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf  

k. Tutorials for Learning R Language: http://www.r-tutor.com/r-introduction  

l. Video Tutorials for Learning R Language: 

https://www.youtube.com/watch?v=iffR3fWv4xw&list=PLOU2XLYxmsIK9qQfztXeybpHvru-

TrqAP&index=1  

m. Introduction to Matlab: https://www.mathworks.com/videos/introduction-to-matlab-

81592.html?s_tid=gn_loc_drop  

n. Tutorials for Learning Matlab: https://www.mathworks.com/support/learn-with-matlab-

tutorials.html  

p. Video Tutorials for Learning Matlab: https://www.mathworks.com/products/matlab/videos.html  

q. Introduction to Maple: 

http://www.maplesoft.com/support/help/Maple/view.aspx?path=ProgrammingGuide/Chapter01  

r. Tutorials for Learning Maple: https://www.maplesoft.com/support/training/  

s. Video Tutorials for Learning Maple: 

https://www.maplesoft.com/support/training/trainingvideos_maple.aspx  

 

 

 

http://www.latex-project.org/about/
https://www.latex-tutorial.com/
https://www.youtube.com/playlist?list=PL1D4EAB31D3EBC449
https://www.python.org/about/gettingstarted/
http://www.learnpython.org/
https://www.youtube.com/watch?v=cpPG0bKHYKc
http://doc.sagemath.org/html/en/tutorial/introduction.html
https://doc.sagemath.org/html/en/tutorial/
https://www.youtube.com/watch?v=LaJGVZCx0Vw
https://www.r-project.org/
https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf
https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf
http://www.r-tutor.com/r-introduction
https://www.youtube.com/watch?v=iffR3fWv4xw&list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP&index=1
https://www.youtube.com/watch?v=iffR3fWv4xw&list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP&index=1
https://www.mathworks.com/videos/introduction-to-matlab-81592.html?s_tid=gn_loc_drop
https://www.mathworks.com/videos/introduction-to-matlab-81592.html?s_tid=gn_loc_drop
https://www.mathworks.com/support/learn-with-matlab-tutorials.html
https://www.mathworks.com/support/learn-with-matlab-tutorials.html
https://www.mathworks.com/products/matlab/videos.html
http://www.maplesoft.com/support/help/Maple/view.aspx?path=ProgrammingGuide/Chapter01
https://www.maplesoft.com/support/training/
https://www.maplesoft.com/support/training/trainingvideos_maple.aspx
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Diff erent Math website resources: 

1. https://www.hs-mittweida.de/   

2. http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/LN250_Weiss/Contents.htm  

3. http://www.fact-index.com/m/ma/mathematical_proof.html  

4. https://www.wikipedia.org/  

5. http://www.math.com/  

6. http://www.onlinemathlearning.com/integers.html  

7. http://plato.stanford.edu/entries/set-theory/basic-set-theory.html 

8. https://www.mathsisfun.com/  

 

 

 

 

 

ñA study without Mathematics is a study without invention like a life without Romanceò 

-Saki Billah 

 [www.sakibillah.com] 

 

Good Luck ! 
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